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ABSTRACT  

The aims of this research project is to develop and gain knowledge about a different 
approach to moisture safety design based on AI in order to attain healthy buildings 
and relate this new approach to current practice and prospective users.  
 
Secondary data (data produced for some other purpose) was used to train Artificial 
Neural Networks (ANN) to predict the performance of outdoor ventilated crawl-spaces 
regarding microbiological smell, mould and rot. The best performing ANN managed 
to predict smell 100%, mould 76%, and rot 92% correctly on 38 validation cases not 
used in the training process. A reliability test was performed designed as a parameter 
study. The results highlighted some uncertainties in the trained ANN which are likely 
to be due to a high level of missing values and skewed data. In addition, the parameter 
study goes far outside what the ranges of the retrieved training data, forcing the ANN 
to extrapolate predictions.  
 
The interview study with engineering consultants indicated that experience is 
considered to be a decision support in moisture safety design even though feedback 
from past projects rarely is available. In addition the general opinion was that available 
tools are too demanding. Through a questionnaire a performance prediction 
comparison was set up to test the competitiveness of the trained ANN. The average 
prediction result for the respondents (engineering consultants, moisture damage 
consultants, moisture experts) was 50% correct predictions whereas the ANN had a 
93% correct prediction level. There was no notable indication of a correlation of the 
prediction results with the respondents’ background. The same study also revealed that 
a system to capture experience is highly requested by the respondents. 
 
The results so far are promising but ANN, based on real life experience, must be 
tested further with better training data, preferably with data designed for this purpose. 
The method has a potential to capture real life experience in a structured and 
systematic manner. Moreover, it may be helpful in the decision process during the 
early stages of design.  
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1 INTRODUCTION 

1.1 BACKGROUND AND RESEARCH CONTEXT 

Moisture issues in the building process have been handled differently during the 
course of time with various results. There is a general frustration reflected by the 
media that are eager to provide an image of the building industry as a non-serious 
business, often claiming that poor workmanship in the end results in moisture and 
mould problems. There is no doubt that the construction industry in many ways is 
responsible for the moisture problems. It is a well known fact that these problems are 
burdened with considerable costs. Tolstoy (1994) states that in Sweden roughly SEK 
6 billion per year is spent on repairs and maintenance of buildings and of that, 
approximately half goes to damages caused by moisture. Furthermore, it is estimated 
that € 9 billion is spent on repair of moisture related damages in the European Union, 
which approximately equals to 1% of the annual return of the building sector (Adan et 

al, 2004). In British Columbia, Canada, it is predicted that 50-70% of the homes built 
between 2000 and 2010 will suffer from moisture damage (Barrett, 2000). According 
to Lisø (2007) the yearly costs of moisture damage in Norway is estimated to 10.5 
billion Norwegian kroner. Anticimex, which is a damage consultant company, 
estimates that 175 000 homes in Sweden have a damaged crawl space (Anticimex, 
2004) where the repair costs range from 30 000 to 250 000 SEK. In the US, the direct 
and indirect costs of treating asthma caused by poor indoor air quality were reported 
to be about $13 billion US (Weiss & Sullivan, 2001). Thus, moisture problems in the 
building sector exist in many countries.  
 
Regardless of who is to be blamed, all actors within the construction process have a 
responsibility to prevent moisture problems from occurring. The engineering 
consultants involved in the design stage are no exception. It is in this stage that the 
conditions for a good service life are created. Despite the wide range of tools 
available, they are not frequently used. One reason is thought to be that they require 
expert knowledge (Hendriks and Hens, 2000). Tools at the expert level are not only 
difficult to use in practice, but also provide designers with raw data that often requires 
some level of expertise to interpret. This data must in turn be translated into 
information that the clients are able to grasp. By improving the quality of information 
during the design process, the client is better equipped to understand the different 
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issues implicated in the project (Barrett and Stanley, 1999). There is a need for 
decision support systems that could provide designers with simplified prediction 
models, which, in turn, could be used to classify and illustrate results for the client’s 
benefit. 
 
Several of the available moisture calculation tools originate from a research 
environment and, hence, are based on quantitative determination. These tools are, 
therefore, primarily not aimed at practical design work. According to Sandin (1998) 
there are basically three approaches to moisture safety design: quantitative 
determination, qualitative assessment or tried and documented solutions. The last one 
is only applicable in a situation where the conditions are the same as those of the new 
project. Quantitative determination involves calculations of the moisture condition of 
the design at hand. According to Sandin (1998), the results of such calculations require 
extensive knowledge to be handled and correctly interpreted. The qualitative 
assessment offers a somewhat simplified moisture safety design approach. It is about 
making small changes in a well known design and assess if the performance is 
improved or not. This approach might for instance also include reading tables 
indicating expected moisture conditions in different situations.  

As the early stages of design contain a low level of information, the input data are, 
therefore, not that detailed. During this process different designs are evaluated where 
the components are known but rarely the dimensions. Quantitative tools are therefore 
not helpful at this point. A decision support tool at this stage must be able to deal with 
simplified data. Due to simplified data the output data can therefore only provide 
rough estimates. Currently, there are no such tools available why the engineering 
consultant has to rely on previous experience and on information found in literature.  

This kind of experience is however difficult to capture and externalise when many 
parameters are involved. Artificial Intelligence (AI) has become rather popular in this 
kind of context. It provides the possibility to extract knowledge from experience and 
apply it to a prediction problem. Several areas such as economics, law and medicine 
have found AI to be helpful for prediction problems which rather often can be based 
on either real life data or expert knowledge. Thomas (2003) describes it as a software 
system with in-built knowledge that within a knowledge domain has the ability to 
resemble a human expert. 

In a previous work (Yverås, 2002), performance indicators as a decision support tool 
have been explored in the context of simplifying the initial moisture safety design 
process. The essence of performance indicators is to simplify complex relationships by 
presenting rough estimates. Even though the indicators provide rough estimates, it can 
be valuable and usable information, especially for those who are not familiar with the 
complex theoretical background. By using performance indicators as the basis of a 
decision support tool, the required knowledge to make moisture safe designs can be 
made more accessible to the engineering consultants. Moreover, it helps the clients to 
understand the implications of their design decisions.       
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The hypothesis has therefore been identified and formulated as follows: 

 

A performance prediction method based on artificial intelligence and performance 

indicators can be applied in the early design stage to initiate the moisture safety 

design process. 

 

1.2 RESEARCH OBJECTIVES 

The aim for the work presented in this thesis is to develop and gain knowledge about a 
different approach to moisture safety design based on AI in order to construct healthy 
buildings.   
 
The specific objectives of the research are: 
 

1. Identify a suitable Artificial Intelligence system for the task. 
2. Apply the chosen system on a design/building element and validate. 
3. Relate and evaluate the approach to current practice and prospective users. 

1.3 SCOPE OF THE RESEARCH 

The scope of the research is focused on the early stages of design where the first 
decisions are made. This only concerns moisture related issues as incorrect decisions 
would lead to a poor indoor environment due to mould or to impaired mechanical 
properties due to rot or rust. 

It is not the objective to analyse and evaluate all available AI-systems as it would 
require too much time. For the same reason the application of this approach will be 
limited by available AI-software. 

The application of AI was restricted to one design, the outdoor ventilated crawl-space. 
The results of this study are, therefore, only applicable to designs with similar 
characteristics. The ventilated crawl-space is, for instance, a rather open design which 
allows ocular inspections without destruction. 

1.4 READING INSTRUCTIONS 

This thesis presents a short summary of five papers which the thesis is based. More 
detailed information can be found in the five appended papers.  
 
After the introduction section the thesis continues to describe the research 
methodology applied in this research project. The section following, Data set up and 

data quality could have been included in the research methodology chapter. However, 
as this information can not be found in the appended papers it deserves to be treated in 
a separate chapter. The thesis is thereafter ended with separate results, discussion and 
conclusion chapters.     
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2 RESEARCH DESIGN 

2.1 EVALUATION OF AI-SYSTEMS (paper II) 

The evaluation of AI-systems involved a literature study of journals, text books, and 
conference proceedings. The aim of the literature review was to gain general theoretical 
knowledge of the AI-area and to study different applications. Furthermore, to save time and 
effort, the study was restricted to two different main AI-systems. Besides comparing these 
two systems with each other, the characteristics of the moisture safety design application were 
also taken into consideration.  

2.2 APPLICATION OF ARTIFICIAL NEURAL NETWORKS (paper III 
and V) 

The second stage of the study concerned the application of the final chosen AI-system, 
artificial neural networks (ANN), which was performed in four steps: 
 

1. Retrieval of real life data 
2. Data inspection 
3. ANN design and training 
4. Validation 

 
The outdoor ventilated crawl space design was chosen as test object (Fig.1). In order to 
build an ANN it is necessary to have access to training data. Several options of sources 
for data retrieval where considered; human experience, field studies and secondary 
data in existing archives. The first involves extracting knowledge from experts, who 
would have to review at least 300 constructed cases with a large amount of variables 
(20-25). Halford et al. (2005) have performed research into the human mind and its 
capacity of processing information. Their findings indicate that a structure of four 
variables is at the limit of human processing capacity. From this point of view the 
expert would be subject to an impossible task in predicting the service life. The risk of 
receiving contradictory data is high. 
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Figure 1. Basic outdoor ventilated crawl-space design (Yverås,2010) 

 
Field studies were another possibility considered. This would involve in situ 
documentation and assessment of a large amount of outdoor ventilated crawl spaces 
with a distribution all over the country (Sweden). The quality of the assembled data is 
likely to be very good as the data would be retrieved in a consistent manner.  However, 
due to much travel, the documentation rate performance would be rather low with 
perhaps only one case a day. It would require at least a year of documentation 
activities. More importantly, the travelling expenses do not correspond to available 
research resources.  
 
The last alternative - existing databases and archives - was therefore finally chosen. 
Compared to previous source this is rather time efficient due to low travel intensity. 
However, it is secondary data that is not designed for this purpose. Missing data is 
therefore an expected issue that will have to be dealt with.  
 
Real life data has been retrieved from two separate sources; National Organisation for 

aid to owners of private small houses (Småhusskadenämnden in Swedish or SNN)) 
and Anticimex. The SSN archive was founded in 1986 and recently closed down. 
Homeowners that had encountered moisture problems could turn to this fund and 
apply for financial help. All cases were investigated by the help of consultants who in 
turn delivered a report of the extent of damage, cause of damage and recommended 
measures. The reports were thereafter stored in the SNN archives.  
 

5 

7 6 

1. Floor structure 
2. Counter floor 
3. Ventilation valve 
4. Foundation wall   

5. Ground surface 
6. Vapour barrier 
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The other source of data belongs to the private sector company Anticimex, whose 
business includes building inspections of different kinds. This project has taken 
interest in the inspection reports that are made before a house purchase is finalised. In 
contrast to SSN, the findings are documented by the surveyor on a form which is then 
stored on a computerized catalogue system. Approximately 1500 inspections are 
performed all over the country per year of which 31 % concern buildings with crawl-
spaces. 
  
The reason for having two sources is that they compensate each others deficiencies. 
The SNN archive provides cases with a higher degree of completeness but instead 
there is a lack of healthy cases. It is important to find both good and bad cases, 
meaning a range of crawl spaces that have different levels of conditions.  
 
Before retrieving training data it is necessary to identify the parameters that are 
believed to have an impact on the service life of the building element. These 
parameters will serve as input data. A literature study was therefore performed 
regarding the outdoor ventilated crawl space which resulted in a data requirement 
specification. In addition it also had to be decided on how to describe the condition of 
the crawl-space cases, descriptions which would represent the output data. A preview 
of the data sources were therefore performed to state available parameters. 
 
Having retrieved the data it was inspected in order to determine whether its quality 
agrees with the requirements of ANN. Noisy data that are believed to impair the 
training process of the ANN have to be removed and missing data need to be replaced. 
Analysing the data quality also helps to interpret the prediction results of the AI-
system and maybe also to foresee difficulties. These issues need to be attended before 
training the ANN. Therefore, there are several steps that need to be taken before the 
training process of ANN can begin. An estimate reveals that about 60 % of the project 
effort is spent on data preparation (Qin et al, 2006). If the data preparation is well 
carried out the complexity of the network will be reduced and its’ generalisation 
ability will increase (Lai et al., 2006)  
 
Training of the ANN has been performed using the Neural Network Toolbox of 
Matlab 7.0 (Demuth & Beake, 2000). A back-propagation (Levenberg-Marquardt) 
algorithm with log-sigmoid transfer function in the nodes is applied to predict the 
performance of the outdoor ventilated crawl-space. Finding the best performing ANN 
designs is an iterative process which is why nearly 30 different ANN designs were 
tried.  
 
The results of ANN-application were validated using a number of cases that were not 
used during training. The validation process measures the prediction ability by 
comparing the prediction results with the real outcome in the real life data. This is the 
traditional way to validate the trained ANN in order to state the accuracy. The results 
did however not correspond with the stated data quality, which is why a reliability test 
was performed which was designed as a parameter study comparing with expected 
results.  
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2.3 RELATING THE AI-APPROACH TO CURRENT PRACTICE AND 
PROSPECTIVE USERS 

This part was divided into two separate studies where the first was undertaken in the 
beginning of this research project, and the second when the performance indicator tool 
had been developed and was ready for testing. 

2.3.1 Current practice of moisture safety design (paper I) 

The first study was designed as an exploratory survey and was performed in 
collaboration with another research project. The primary aim for this research project 
was to gain insight of how moisture safety design is approached in the design process 
in order to relate it to the applied AI-method. A total amount of eight building 
consultants with different levels of education and experience were interviewed. The 
survey was based on five main key questions (see Appendix A). 

2.3.2 Performance prediction test, AI versus professionals (paper IV) 

The second study tested the competitiveness of the AI-approach in comparison with 
professionals. It was designed as a performance prediction test where the trained ANN 
and the respondents were given five different outdoor ventilated crawl-space designs 
with different geographical locations (Fig. 2) and ages, to predict the condition. As the 
previous study indicated that experience was important as a decision support the 
results of the predictions were also compared amongst the participants in the study to 
see if their background had any impact on their prediction ability.       
  

 
 
                                         Figure 2  Geographical location of  test cases. 
 
The study was conducted through a survey using a web based questionnaire tool, 
Dialog manager 3.0, which also allows cross-analysis of the retrieved data. It was 
mailed out to those who are known to handle moisture issues and also to prospective 
users of a tool based on the method explored in this thesis. The questionnaire can be 
found in Appendix B.   

1

5 

2 

3 

4
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3 DATA SETUP AND DATA QUALITY 

In section 4.1 two different AI-systems are described, of which the Artificial Neural 
Network (ANN) was finally chosen. This chapter, besides presenting how the data was 
retrieved and organised, primarily describes how the flaws in the secondary data were 
handled.  
 
When retrieving the cases the information was arranged as output and input 
parameters. Three output data, performance indicators, used to describe the condition 
of the outdoor ventilated crawl-space case: perceived microbiological smell, level of 
visible mould growth and level of visible rot, Table 1. Table 2 presents the input 
parameters which influence the performance of the crawl-space. 
 
 

Table 1  Output representation – performance indicators 

Output data Definition 

Y1      Smell 
Y2    Ocular detected mould 
 
Y3      Ocular detected rot 

0 = No smell, 1 = microbiological smell  
0.125 = Nothing visual, 0.375 = Local spots, 0.625 = Light growth in 
major part of  crawl-space, 0.875 = Extensive / rich growth 
0.167 = Nothing visual, 0.5 = On surface, 0.833 = In depth 

  
 
The drawback of using secondary data like in this research project is the level of data 
quality and that the parameter list and characteristics are limited as the sources are 
designed for another purpose. In this case this has resulted in missing data (table 5, 
Paper V), absence of at least one important parameter and a dearth of performance 
indicators. The performance of the ANN relies very much on the data quality at hand. 
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Table 2  Input representation 

 Parameter Definition 

A 

X1    Capillary breaking layer 
X2    Drainage system – roof 
X3    Drainage system – ground 
X4    Surrounding ground inclination 

1 = yes, 0 = no  
1 = yes, 0 = no  
1 = yes, 0 = no  
1 = yes, 0 = no 

B 
X5    Insulation - counter floor 
X6    Level of insulation in floor structure 
X7    Insulation – foundation wall 

1 = yes, 0 = no  
 [mm] 
1 = yes, 0 = no 

C 
X8   Ventilation – mechanical 
X9   Vapour barrier 

1 = yes, 0 = no 
1 = yes, 0 = no 

D 

X10   Load carrying structure: inorganic 
X11   Counter floor: inorganic 
X12  Foundation wall: inorganic 
X13   Impregnation of wood material 

1 = yes, 0 = no 
1 = yes, 0 = no 
1 = yes, 0 = no 
1 = yes, 0 = no 

E 
X14   Floor heating 
X15  Organic waste     

1 = yes, 0 = no 
1 = no,  0 = yes 

F 

X16   Relative humidity 
X17   Precipitation 
X18   Mean annual temperature 
X19   Reference wind velocity 
X20   Surrounding terrain           

X21   Ground material                

[%] 
[mm] 
[C°] 
[m/s] 
1 = Outside urban areas , 0 = Urban 
Rock, clay = 0 / Moraine, Silt = 0.5 / Gravel, Sand 
= 1 

G X22   Age at inspection Age at inspection – year of construction 

 

3.1 REPLACEMENT OF MISSING DATA 

Missing data needs to be replaced which can be done using various replacement 
techniques (random values, statistical methods, neural networks).  Table 3 displays the 
final choice of missing values for each parameter where through the following 
procedure: In the first instance, replace missing data with “basic” values through 
logical reasoning, or use values from other cases originating from the same house 
manufacturer during the same year. Otherwise, use mean values where possible (for 
example for parameters such as insulation). If none of the above alternatives matches 
the situation: replace the missing data by a neutral value (0.5) 
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Table 3. Replaced missing values 

Parameter Replacement value 

X1     Capillary breaking layer 
X2     Drainage system – roof 
X3     Drainage system – ground 
X4     Surrounding ground inclination 

0.5  
1 
0.5 

0.5 

X5     Insulation - counter floor 
X6     Level of insulation in floor structure 
 
 
X7     Insulation – foundation wall  

0 
Alt 1:.Manufacturer * 
Alt 2: concrete structure=85 mm  
Alt 3: else=200 mm 
0 

X8     Ventilation – mechanical  
X9     Vapour barrier  

0 
1 

X10    Load carrying structure: inorganic 
X11    Counter floor: inorganic 
X12    Foundation wall: inorganic  
X13    Impregnation of wood material 

0 
0 
1 
0.5 

X14    Floor heating  
X15    Organic waste  

0 
1 

X16    Relative humidity  
X17    Precipitation  
X18    Mean annual temperature  
X19    Reference wind velocity  
X20    Surrounding terrain  
X21    Ground material  

No missing value 
No missing value 
No missing value 
No missing value 
No missing value 
0.5 

X22    Age at inspection  No missing value 

Y1     Smell 
Y2     Ocular detected mould 
Y3     Ocular detected rot/rust 

0 
0.125 
0.167 

* Cases with same manufacturer can be considered to have same dimensions 

 
 

As can be seen in Table 3, the strategy favours logical reasoning; for example if no 
remark or comments can be found regarding the vapour barrier in a case, it can be 
assumed that there is a vapour protection on the ground. In this case the logic is based 
on the conception that there is a prevailing idea of how a basic crawl-space should be 
composed, e.g. there should always be a vapour protection on the ground. 
Accordingly, parameters that are deviating from the conception of a basic crawl-space 
are presumed to have been mentioned in the inspection protocol. In order to follow and 
apply this logical reasoning when replacing missing values, a strong “idea” of what is 
regarded as necessary in a basic crawl-space is required. Moreover, can the 
investigators be trusted to have good knowledge about the basic design and what it 
should contain?  

There is, however, one basic parameter where the basic reasoning could not be 
applied. The impression received when reviewing the retrieved cases is that parameter 
X1 (capillary breaking layer) does not seem to be an important element in the crawl-
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space design as it is never mentioned even where the ground contains clay. This is why 
the neutral value 0.5 is assigned to parameter X1. The same goes for drainage system 

in ground (X3) as it is difficult to inspect.   

It was found that the surrounding ground inclination is an important element in the 
archives. Snow on the ground was however a reason for the inspectors not to give an 
opinion about the ground inclination. Hence, a neutral value of 0.5 replaces missing 
values.  

Parameter X5, X7, X8, X10, X11 and X14 are elements that are believed to improve the 
service life conditions of a crawl-space, but are not considered to be a part of the basic 
crawl-space design. The assumption is therefore that these solutions would not be left 
out in the reports if they exist, which is why any missing value are replaced by 0. 

Regarding the insulation in the floor structure there are three ways to replace a missing 
value. Firstly, in many of the reports the name of the house manufacturer is mentioned. 
From what can bee seen in the retrieved material the insulation thickness in the floor 
structure changes very little over the years but varies between manufacturers. This 
knowledge can be used when replacing missing values. Secondly, a general 
assumption can be made about the insulation of concrete structures: the thickness has a 
mean value of 85 mm (equivalent mineral wool) which will replace missing data in 
such cases. Thirdly, most of the designs have a wooden floor structure and an 
insulation thickness of 200 mm. The remaining missing values are therefore replaced 
with that value. 

Impregnation of wooden materials (X13) and ground material (X21) seem not to be 
included as “basic” elements in the crawl-space when viewing the retrieved data. 
These two parameters are therefore assigned a neutral value of 0.5 when missing. The 
situation is the opposite when it comes to vapour barrier (X9) and presence of organic 
waste (X15) in the crawl-space. Parameter X12 (foundation wall - inorganic) is 
considered to be present when not mentioned which means a missing replacement 
value of 1. Parameter X15 is given the same missing value but with the opposite 
meaning – no organic waste present. A value equal to 1 means that the parameter is 
supposed to have a positive effect on the performance. 

The output (performance indicators); smell, mould and rot/rust have received a healthy 

value when they are not mentioned in the reports, which is taken to mean that no 
smell, mould or rot/rust have been found. 

3.2 DATA RELIABILITY 

First of all the data is collected from reports that have been created by people with 
different backgrounds and thereby different knowledge about crawl-spaces. This might 
influence what information is important for them to include in the reports. 
Furthermore, the assessment of the crawl-space condition is very subjective: for 
example, smell can be perceived differently. There can also be different conceptions 
about the level of visible mould growth. In addition mould growth can also be 
disguised by the surface it is growing on. Black mould spots are more difficult to 
detect on a dark surface than on a light coloured surface.  
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Technical descriptions from the building permit were included in the majority of the 
reports from the SSN. These descriptions turned out in some cases not to agree with 
what was really built. For instance the drainage system was found to be missing when 
the moisture damage consultant had a test pit dug.  
 
Therefore, both input data and performance indicators are associated with some level 
of uncertainty, which of course also influences the data quality. 
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4 RESULTS 

4.1 ARTIFICIAL NEURAL NETWORKS OR CASE BASE 
REASONING? 

Two of the most dominant artificial intelligent systems in the literature are artificial 
neural networks (ANN) and case base reasoning (CBR), both of which have been 
investigated here. The aim was to find out which one of them is most appropriate for 
the problem described in this research project. The crucial difference between these 
two systems is the level of required knowledge of the area the systems are applied on. 
The major downside with CBR is that it requires an expert within the knowledge 
domain to structure the system correctly. This means that the problem at hand can not 
be flawed, containing unknown attributes. Using the CBR system requires the 
developer to be very knowledgeable about the area in order to be able to organise the 
parameters in terms of importance. This is not the case with ANN as this is a self 
learning system. It is, however, necessary to have enough information to capture the 
parameters influencing the problem area. The CBR system is based on a library of 
different cases while ANN creates a memory structure based on what it has learned 
from the cases presented during a training process. According to Leondes (2002) the 
application of ANNs has great value when it is difficult or impossible to uncover 
relationships. The method is also helpful even when the data is noisy or incomplete. 
One drawback though with ANN is that it acts as a black box where the trained ANN 
is not available for inspection. More on the comparison between these two systems can 
be found in Paper II. However a short and simplified description of ANN and CBR 
will be given below. 
 
An ANN consists of a structure of interconnected nodes arranged in layers, Figure 3. 
Between the nodes there are weights wherein the result of the training process is 
captured. In order to train the ANN a number of cases with identified outcomes are 
needed. The input layer represents the parameters describing the problem which in this 
case are the parameters influencing the condition of the outdoor ventilated crawl-
space. The outcome, in this case the condition of the outdoor ventilated crawl-space, is 
represented in the output layer. Each case is presented for the chosen ANN and is 
propagated through the entire network where the output signal is compared with the 
real outcome. The calculated error is thereafter back-propagated in the network 
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adjusting the weights. This procedure is repeated until the error has reached an 
acceptable level. This has to be tried on several ANN structures with different amount 
of nodes and hidden layers in order to find the best ANN design.  
 
 

 
 

Figure 3  Artificial Neural Network structure. 

 
 
A CBR system is created through a library of different cases that is arranged in a 
certain manner. When a prediction case is presented the CBR system looks for the 
most similar case in the library of cases to match the current case as close as possible. 
If it cannot match the case exactly an adaption process takes place with the most 
similar cases found in the library. In order for the CBR system to prioritize and adapt a 
final suggestion the importance of each parameter must therefore be given when 
creating the CBR system. This is why the knowledge of the prediction area of interest 
must be better than when applying ANN.    

4.2 ANN DESIGN, TRAINING AND VALIDATION RESULTS 
Separate ANNs have been trained on each performance indicator. The ANN designs 
were tried on each performance indicator using both one and two hidden layers (see 
Paper III). In all, 27 different ANN designs where tried. The training was stopped 
through a cross validation. During training the prediction performance of the ANN 
was tested against 38 cases not used in the training set. When the error increased in the 
validation cases, the training of the ANN was terminated. The best performing designs 
and the results are presented in Table 4. 
 
 

Table 4. ANN prediction performance 

Performance indicators Corrrect classification [%] ANN Design 

Smell 
Mould 
Rot/Rust 

100 (38/38) 
76.3 (29/38) 
92.1 (35/38) 

17 + 17 
5 + 10 
2 + 17 

 
As can be seen from Table 4, the trained ANNs ability to predict the performance of 
the outdoor ventilated crawl-spaces is rather good. The validation cases were chosen to 
represent a wide range of designs. Besides the basic design (Figure 1) and cases with 
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different geographical locations there were cases deviating from the basic design as 
follows: 
 

• No vapour barrier 
• Floor heating 
• Increased/decreased insulation in the floor structure 
• Insulation of counter floor 
• Insulation foundation walls 
• Mechanical ventilation 
• Concrete structure 
• Organic foundation walls 
• Impregnation of wood material 

 
The reliability test of the ANN, through a parameter study (Table 7) spanning 50 
years, highlighted some uncertainties and flaws in the trained ANN. Foremost of these 
flaws, is the mould performance indicator which displays a reversed degradation 
process.  

 

Table 7 Chosen parameters in the study 

        Parameters 

0 Case base  

1 Removed vapour barrier  
2 Removed vapour barrier + Low permeability in ground   
3 Removed vapour barrier + High permeability in ground 
4 Mechanical ventilation  
5 Outside urban areas  
6 Foundation wall organic 
7 Decreased insulation floor structure  
8 Increased insulation floor structure 
9 Floor heating  

10 Insulation foundation wall  
11 Insulation counter floor 
12 Thermal capacity (low permeability) 
13 Impregnation of wood material  
14 Load carrying structure of concrete  
15 No capillary breaking layer  
16 No drainage system ground  
17 No drainage system roof 
18 Ground inclination to the house  

 
 
Other displayed uncertainties are associated with the results of 1, 2, 3, 12, 13, 15, 16, 
and 17 in Table 7. All of the other elements in the parameter study agree in general 
with the expected results so far. The same goes for the results in the second part of the 
reliability test concerning different geographical locations. For more detailed results 
see paper V, Figure 2-5.  
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4.3 CURRENT PRACTICE IN THE DESIGN STAGE 
The interview study explored how consultants evaluate the performance of a building 
regarding moisture safety and to what extent knowledge about building physics theory 
is being used during the design process. The eight interviewed consultants had various 
backgrounds regarding experience and education, se Paper I, Table 1. 
 
Experience was referred to as a decision support. However, it was admitted that they 
do not get adequate feedback on past projects which decreased the value of experience. 
Some of the consultants also included safe and well-known designs in the concept of 
experience. 
Few tools were used amongst the consultants and those who did either had very basic 
tools or built their own design tools. Those who did not use any computer based tools 
stated that they are: 
 

• too costly to buy 
• too difficult to learn 
• requires to much time (to run the simulations) 
• not enough time allocated to evaluate the performance 

 
In general, the most desired feature of any computer-based tool amongst the 
consultants is that it needs to be easy to use in terms of low level of input and output.  
 
Other interesting results in the interview study concerned the level of awareness and 
confidence of the interviewed. A higher level of education appeared to be related to 
and increase their level of awareness regarding the whole design process, complex 
performance issues and current levels of the technology base (Paper I, Figure 1). 
Furthermore, those with less education indicated a great deal of confidence about the 
complexity of building physics. Confidence is defined as the strength of a person’s 
belief that a specific statement is the best or most accurate response (Peterson and Pitz, 
1988).    
  
4.4 PERFORMANCE PREDICTION CHALLENGE 
The questionnaire was sent out to 110 people, which resulted in a response level of 
50% and had the following distribution by profession: 

 
− Engineering consultant 40% (22) 
− Moisture damage consultant 29% (16) 
− Moisture expert  31% (17) 

 
In the performance prediction challenge the ANN managed to make 14 (93%) correct 
predictions of a possible 15, whereas the respondents provided an average of 7.5 
(50%) correct predictions. The results of the respondents ranged between 3 and 12 
correct predictions.  
 
The prediction results of the questionnaire where cross analysed by profession, 
educational background, and years of experience regarding moisture damage 
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inspection. The results did not present a distinct indication that would verify any of 
these correlations, see Paper IV, Table 5-8.. There was however one small exception 
for those with an additional moisture education who managed to provide 10% better 
prediction results than those without additional moisture education. Most surprising 
was that experience of moisture damage inspections did not lead to better prediction 
results.  
 
Is this kind of tool wanted? According to this survey, the respondents thought that all 
suggested moisture design decision support tools should be improved or developed 
(Paper IV, Table 9). Highest on the list though was a system to capture experience 
(93%).  
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5 DISCUSSION 

In the study it was indicated that ANN was better qualified for this problem than CBR 
(Paper II). This AI system was finally chosen because of the self-learning feature 
which does not require full knowledge of the area. The outdoor ventilated crawl-space 
has been explored in several research projects and the knowledge of the performance 
of the design is therefore rather extensive. However, it is not good enough to be 
applied on the CBR-system as this requires the system builder to assign weights of 
importance on each parameter influencing the performance of the design. The 
drawback with ANN on the other hand is the black-box behaviour where the user 
cannot trace the reasoning process (Chua et al., 2001).   

 
Secondary data from real life was used to train the ANN and despite poor data quality 
the trained ANN managed to deliver good prediction results (Paper III). The parameter 
study on the other hand highlighted some flaws in the prediction results, of which the 
most conspicuous concerned the reversed mould process (Paper V). There are several 
explanations for this behaviour of the trained ANN, but the most likely has to do with 
the composition of training cases where the average age increases with increased 
mould growth. However, this might not be the sole explanation as mould growth is a 
rather complex process. According to Hukka and Viitanen (1999) it is possible for 
wood to partly recover from mould infestation during dry periods when the mould 
activity is decreased. It is therefore difficult to dismiss the displayed reversed 
degradation process as completely incorrect.  
 
The deviating results of 2, 3, 12, 13, 15, 16, and 17 in Table 7 can be explained by one 
common factor, that is the high level of missing values, exceeding the critical level of 
20%  (Famili et al, 1997). Some of them might, however, have a natural explanation. 
For instance, the absence of drainage system in ground does not necessarily impair the 
performance. If the ground is highly permeable there is no need to arrange a drainage 
system (Nevander and Elmarsson, 1994). The deviating result when removing the 
vapour barrier (nr 1 in Table 7) is a result of the parameters with a high level of 
missing values. If the ground condition is uncertain it is difficult for the ANN to 
predict the performance if the vapour barrier is removed. 
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Having a vapour barrier on the ground is recommended in the literature but the ANN 
suggests that this decreases the performance. There are cases found in the training data 
without the vapour barrier displaying healthy conditions. Removing the vapour barrier 
does not necessarily always result in a more humid climate in the crawl-space. 
According to Kurnitski (2000) materials with high moisture capacity can improve the 
moisture condition in the crawl-space. If there is a dried out layer of clay in the ground 
this might have a moisture buffering effect. 
 
The results in the second part of the reliability test concerning different geographical 
locations seem to be correct. If this is the case the crawl-space design must be adapted 
to local conditions and geographical locations. In all, the parameter study indicates that 
there are components of skewed data, missing data and possible unrevealed internal 
relations or underlying mechanisms that makes it difficult to completely dismiss the 
prediction performance of the trained ANN in this instance. In addition, the parameter 
study goes far outside the ranges of the retrieved training data. Each design case does 
not, for instance, have representation over the whole age span, 0-50 years, given in the 
study. This has forced the ANN to extrapolate the predictions. Having access to 
complete and flawless data could have shed some more light on why, for instance, 
some outdoor ventilated crawl-spaces after many years still remain healthy while 
others don’t. 
 
As a final test, the trained ANN prediction ability was compared with the ability of 
engineering consultants, moisture experts and moisture damage consultants (paper IV). 
The results indicated that the ANN did provide far better results than the respondents 
in the survey. This can be caused by other things than just pure skill. The low 
prediction ability of the respondents might have been caused by a concentration drop 
as the first cases had a better hit rate than the last cases (see Table 4, Paper IV). 
Unmotivated respondents can also have influenced the results. As stated in the results 
experience of moisture damage inspections did not provide for better prediction 
results. A probable cause can be the high number of parameters which can make it 
difficult to handle. According to Halford et al. (2005) it is impossible for the human 
brain to process information with more than four variables.  
 
The application of ANN on this kind of problem provides the possibility to create a 
system that can capture real life experience; experience that in the survey (paper I) was 
referred to as decision support even though it was rarely or ever followed up. In the 
prediction challenge survey (paper IV) this kind of tool was requested. The question is, 
though, if the drive to use such a tool is strong enough if it were developed further and 
introduced? As noticed in the results of the interviews (paper I) the confidence can be 
an obstacle. If you think your ability for the task is good enough the motivation to 
enhance your knowledge area or incorporate new tools for improved decision support 
can be rather small. That previous tools have been perceived as too costly or to 
difficult to use may also stop prospective users from trying new tools.      
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6 CONCLUSIONS 

Is it possible to apply Artificial Intelligence, in this case Artificial Neural Networks, 
as an early decision support system based on real life experience?  
 
The results so far are promising but ANN, based on real life experience, must be 
tested further with better training data. It would be even better if the data retrieval was 
designed for this purpose. The parameter study highlighted some uncertainties which 
largely could be related to data quality, composition and design of parameters. The 
current archives of SSN and Anticimex are therefore not sufficient to meet the 
necessary requirements of data quality, in particular, because of the level of missing 
values. In addition, the performance indicators must be improved in order to avoid 
noisy data. The trained ANN based on used secondary data is therefore not suited for 
any further conclusions regarding the performance of the outdoor ventilated crawl-
space design to be drawn.  
 
What makes this ANN approach so interesting is the fact that there is a gap to be 
filled regarding different types of moisture design methods, in this case well tried 

solutions. This approach can be of assistance in the decision process during the early 
stages of design when the accumulated project information still is small and the detail 
level is rough. Different design options can be assessed and compared. Previous 
experience can be captured in the structured and systematic manner as displayed in 
Figure 4. The method also allows the knowledge to be distributed easily. Another 
benefit is that both input and output data are straightforward and easy to grasp. The 
decision maker can easily learn the true outcome of a certain design from experience 
and how it evolves over time. To compare alternative designs by humidity and 
temperatures alone, which is offered by traditional tools, is more difficult and requires 
more knowledge to be handled. Acquiring a large amount of primary data for neural 
network training in this context requires extensive resources. Considering the costs 
due to moisture damage every year, the use of this tool should fairly quickly pay off 
for the building industry and society.  
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Figure 4.   Performance prediction by artificial neural networks. 
 
Amongst professionals, experienced based decisions seem to be common in the 
design stage even though follow ups are rarely, if ever, done. The questionnaire also 
indicated that there is a demand for a system to capture experience regardless if they 
are engineering consultants, moisture damage consultants or moisture experts. In the 
prediction challenge the trained ANN performed better than any of the respondents 
which in turn indicates the potential of such a tool for practical use. Design decision 
based on personal experience, even if it was followed-up, is not reliable – especially 
when the design includes a large number of parameters to be considered. It is 
therefore not recommended to use the approach of well tried solutions without any 
computational aid. The question is, however, if a tool based on the ANN-approach 
can be implemented for practical use still remains to be answered. Can confidence and 
awareness be obstacles in an implementation process? 
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7 FURTHER WORK 

To explore this subject further would firstly, require better quality of the training data. 
This is necessary as the results in this thesis could neither completely support nor 
reject the suggested performance prediction method. Listed below are the important 
aspects learned in this research project, points which must be considered for further 
work in order to be able to improve the data retrieval process: 
 

• The design and composition of input data also with respect to data retrieval 
conditions allowing robust, consistent and reliable data 

• A clear and unambiguous sampling strategy should be considered  
• Output data (performance indicators) can be sensitive to seasonal changes 
• Consider limiting the age span of retrieved cases as it would reduce the 

required amount of cases 
• For the same reason as above - narrow down the variations of the design 
• Design separate ANNs for each performance indicator 

 
One aspect not dealt with in this research project is the influence of workmanship. 
Some designs can be more sensitive to this aspect than others, a fact that should be 
considered.  
 
The outdoor ventilated crawl-space used as a test case in the application of ANN is a 
rather open design allowing a non-destructive data retrieval. This is not the case for 
most other construction designs, which is why the design of performance indicators 
(output data) should be adapted to each construction design.  
 
One of the more important features of this kind of tool, is that the input and output 
both are rather simple and that complex relations and knowledge are built in. An 
alternative to real life data is to use the results of numerical calculations based on 
reliable physical models. In this way, this complex knowledge is packaged into a tool 
accessible for those with less theoretical knowledge. The challenge is to make the 
output (results) easy to understand and grasp.  
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APPENDIX A 

INTERVIEW QUESTIONS 
 
Key Question 1:  
How would you describe the design process of a building? 
 
Design process 
 

1. How much time is spent evaluating buildings? (moisture, lifetime calculations, 
energy use, thermal comfort, ventilation etc). 
Key: to determine the level of importance of these issues 

 

2. How much time would you like to spend? 
Key: are they aware of the issues or are they restricted in some way? 

 

3. Hindrances? 
Key: Describing the restrictions. 

 

4. How are the various aspects integrated to get the whole picture? 
Key: determine if there is any form of co-operation between the different 

consultant groups. 

 

5. If you had more money on a project for the evaluation phase, where would you 
spend it? Why? (Get them to elaborate on the answers.) 
Key: To see if they are aware of building physics aspects. Do they really think 

it is important? 

 

 

 

 

 

 



 
 

 
Key Question 2:  
What are the most important performance requirements when designing a building? 
 
Performance requirements 
 

1. What performance requirements do you have and how do you check that they 
are evaluated? 
Key: Shows if they use the performance concept. 

 

2. Do the customers have specific requirements? 
Key: Shows the level of knowledge of the clients. 

 

3. Does the consultant ask the clients about other requirements (above the 
minimum required by law)? 
Key: Shows if they understand the performance concepts. 

 

4. Has the clients ever suggested any other solutions that the consultants 
disagreed with?  
Key: How have they dealt with such clients? How do they show clients their 

mistakes in the design of the building? Do they point out flaws if the client has 

approved/designed the design? 

 

5. Do you ever educate your clients on the importance of evaluating a building’s 
long-term performance? 
Key: Empowering the client, is it done? 

 

6. Do the clients assume it’s the job of the consultants to evaluate the building? 
Key: What is expected of a consultant? 

 

7. Have you ever made recommendations that would improve a building only to 
have them dismissed by the client because of the cost/other reasons? 
(Examples) 
 
 

Key Question 3:  
How do you evaluate the performance of a building? 
 
Tools 
 
1. Hypothetically speaking, what types of decision tools would be useful to you if 

there were some available? 
Key: Recognise holes in the market. 

 

 

 



 
 

 

2. What specific feature would you want these tools? 
Key: Defining the tools needed. 

 

(If not natural, steer towards performance and building physic-based tools and 
note reaction) 
 

3. What are the benefits to your company in using these tools? Why not? 
Key: Identify obstacles for the  implementation phase of our projects. 

 

If possible: - Do you currently use any tools? 
Key: Identify the ‘good’ software on the market. 

 

 Yes – Which ones do you use? Describe their strengths and weaknesses. 
 Key: Use this information to improve our own tools. 

 

No – Is there a reason to not use the tools ex. Are they too difficult to use, 
do they take too much time to use? Are the results from the current tools 
worthless? 
Key: Use this information to improve our own tools. 

 
  
 

Key Question 4:  
What influences do economical aspects, such as market conditions and market 
trends have on the design on the building? 
 
Economical aspects 
 
1. What are the current market conditions (generally)? 

Key: Historical background. 

 

2. What are the current trends in regards to  
a. customer demands and 
b. industry demands? 

Key: Historical background 

 

3. What do you have to gain by using performance and building physics based 
tools? 
Key: Identify obstacles for the implantation phase of our projects. 

 
 
 
 
 
 
 



 
 

 
Key Question 5: 

Moisture problems are becoming more popular in the media. As you know, it is 
part of building physics theory. Do you feel comfortable working with building 
physics issues (heat, ventilation and moisture issues)? 
 
Level of competence 
Comfortable 
 
1. Do your co-workers feel comfortable with this? 

 
2. How does the industry in general feel? Nervous? 

 
3. What is needed to solve this problem? 

 
 
 
 
 
 



 

QUESTIONNAIRE – PERFORMANCE PREDICTION CHALLENGE 
(PAPER IV) 
 
 
Invitation letter 
 

This is a survey that has been developed through a research project on the Chalmers 
University of Technology which has been financed by Formas, SBUF and CMB.

The main part of the questionnaire contains a test where you are to asses the 
condition of different crawl spaces
response level I hope that you will find the time to answer this web based 
questionnaire. All the respond

Looking forward to your participation in the survey before the 5

With best regards, 
 
Veronica Yverås 
Chalmers University of Technology
 

 
 
 
 
 
 
 
 

PERFORMANCE PREDICTION CHALLENGE 

his is a survey that has been developed through a research project on the Chalmers 
University of Technology which has been financed by Formas, SBUF and CMB.

part of the questionnaire contains a test where you are to asses the 
condition of different crawl spaces and ages.  As the study would benefit a high 
response level I hope that you will find the time to answer this web based 
questionnaire. All the respondents are guaranteed to be anonymous in the survey. 

Looking forward to your participation in the survey before the 5th February, 2008.

Chalmers University of Technology 
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PERFORMANCE PREDICTION CHALLENGE  

his is a survey that has been developed through a research project on the Chalmers 
University of Technology which has been financed by Formas, SBUF and CMB. 

part of the questionnaire contains a test where you are to asses the 
As the study would benefit a high 

response level I hope that you will find the time to answer this web based 
ents are guaranteed to be anonymous in the survey.  

February, 2008. 
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Question 1 

How many 

 

Question 2 

Which category of profession agrees best with your current work?

 

Question 3 

How many years of experience do you have within the following areas?

  

Engineering consultant

Moisture damage investigations

Research & Development

 

 

 

 

 

How many employees does your company have? 

 
Fewer than 5 

 
5-35 

 
36-100 

 
100-500 

 
More than 500 

 

   

       

Which category of profession agrees best with your current work?
  

 
Engineering consultant 

 
Moisture damage investigator 

 
Moisture expert 

 

   

       

How many years of experience do you have within the following areas?

0 1-5 6-10 10-15 15-20 >20 
years

consultant 
     

Moisture damage investigations 
     

Research & Development 
     

     

 
   

       

 

Backward     

Backward     

Which category of profession agrees best with your current work?  

Backward     

How many years of experience do you have within the following areas? 

>20 
years 

 

 

 

 



 

 

 

Question 4 

Which of the following educations do you have?

 

Question 5 

Do you have any additional education regarding moisture issues?

When answering this question you can choose more than one option. 

 
Byggdoktor (House Doctor)

 
Diplomerad fuktsakkunnig (Moisture adviser)

 
Auktoriserad fuktkontrollant RBK (Authorised moisture inspector)

 
Other 

 

Question 6 

What other additional moisture education do you have?

Which of the following educations do you have? 

 
High school engineer 

 
Bachelor of science 

 
Master of science 

 
Licentiate of engineering / PhD 

 
Other 

 

   

       

Do you have any additional education regarding moisture issues?
 

When answering this question you can choose more than one option. 

Byggdoktor (House Doctor) 

Diplomerad fuktsakkunnig (Moisture adviser) 

Auktoriserad fuktkontrollant RBK (Authorised moisture inspector) 

 
 

   

       

What other additional moisture education do you have? 

 
 

 
 

   

       

 

Backward     

Backward     

Do you have any additional education regarding moisture issues?  

When answering this question you can choose more than one option.  

 

Backward     



 

 

 

Question 7 

There is a need to improve/develop following tools in order to 

  

Handbooks 

Systems to capture experience

Product information from material producers

Moisture calculation tools 

Moisture education 

Guidelines during design 

Question 8 

You are in a situation where you are to
ages. In other words 

The condition assessment will be done on the basis of 3 categories; smell, mould and 
category is allowed. This means that you will predict

Each case will be displayed by a table where marked fields shows
fields means that these solutions or materials are excluded. This is all the information that is available for you!

You are free to solve the predictions with any tool you like.

 

There is a need to improve/develop following tools in order to deal with moisture issues in your 
profession.  

 

1 
Don't 
agree 
at all 

2  3  4  5  
Completely 

     

experience 
     

Product information from material producers 
     

     

     

     

 

 
 

 
 
 
 
 

  

       

ASSESSMENT OF CONDITION 
  

You are in a situation where you are to assess the condition of 5 different outdoor ventilated crawl spaces with various 
ages. In other words - what is their condition within a designated amount of years?

  
The condition assessment will be done on the basis of 3 categories; smell, mould and rot. Only one answer for each 

This means that you will predict the condition for each case  - all with different ages.
  

Each case will be displayed by a table where marked fields shows the design composition of the crawl space. Empty 
fields means that these solutions or materials are excluded. This is all the information that is available for you!

  
You are free to solve the predictions with any tool you like. 

  
  

Good luck! 

 
 

   

       

 

Backward     

deal with moisture issues in your 

6 
Completely 

agree 

Don't 
know 

  

  

  

  

  

  

Backward     

assess the condition of 5 different outdoor ventilated crawl spaces with various 
what is their condition within a designated amount of years?    

rot. Only one answer for each 
all with different ages.     

the design composition of the crawl space. Empty 
fields means that these solutions or materials are excluded. This is all the information that is available for you! 



 

Question 9 
 

Crawl space design:

 
No smell 

 
Microbiological smell

 

 

 
 

 
 
 
 
 
 

 Case 1 
  

Crawl space design: Age 31 years   

Capillary breaking layer in ground x 

Drainage system roof x 

Drainage system ground x 

Surrounding ground sloping from building   

Counter floor insulated x 

Inside foundation wall insulated   

Mechanical ventilation   

Vapour barrier on ground x 

Inorganic counter floor x 

Inorganic slide protection in foundation wall x 

Floor heating   

    
Click the image for full size  

 

 

Microbiological smell 

 
No visual mould 

 
Local spots of mould 

 
Light mould growth in major part 

 
Extensive/rich mould  
Growth 
 

 

 
No rot 

 
Rot on surface

 
Rot in depth

 

 

 

Backward     

 

Rot on surface 

Rot in depth 



 

Question 10 
 

Crawl space design:

 
No smell 

 
Microbiological smell

 

 

 

 
 
 
 
 
 
 

 Case 2 
  

Crawl space design: Age 20 years   

Capillary breaking layer in ground  

Drainage system roof X 

Drainage system ground X 

Surrounding ground sloping from building   

Counter floor insulated  

Inside foundation wall insulated   

Mechanical ventilation x  

Vapour barrier on ground  

Inorganic counter floor  

Inorganic slide protection in foundation wall X 

Floor heating   

    
Click the image for full size  

 

 

Microbiological smell 

 
No visual mould 

 
Local spots of mould 

 
Light mould growth in major part 

 
Extensive/rich mould growth 
 

 

 
No rot 

 
Rot on surface

 
Rot in depth

 

 

 

Backward     

 

Rot on surface 

Rot in depth 



 

Question 11 
 

Crawl space design:

 
No smell 

 
Microbiological smell

 

 

 
 
 
 
 
 
 

 Case 3 
  

Crawl space design: Age 17 years   

Capillary breaking layer in ground X 

Drainage system roof X 

Drainage system ground X 

Surrounding ground sloping from building   

Counter floor insulated  

Inside foundation wall insulated x  

Mechanical ventilation  

Vapour barrier on ground  

Inorganic counter floor  

Inorganic slide protection in foundation wall X 

Floor heating   

    
Click the image for full size  

 

 

Microbiological smell 

 
No visual mould 

 
Local spots of mould 

 
Light mould growth in major part 

 
Extensive/rich mould growth 
 

 

 
No rot 

 
Rot on surface

 
Rot in depth

 

 
 
 

 

Backward     

 

Rot on surface 

Rot in depth 



 

Question 12 
 

Crawl space design:

 
No smell 

 
Microbiological smell

 

 

 
 
 
 
 
 
 
 

 Case 4 
  

Crawl space design: Age 15 years   

Capillary breaking layer in ground X 

Drainage system roof  

Drainage system ground X 

Surrounding ground sloping from building   

Counter floor insulated  

Inside foundation wall insulated  

Mechanical ventilation  

Vapour barrier on ground x  

Inorganic counter floor  

Inorganic slide protection in foundation wall X 

Floor heating  x  

    
Click the image for full size  

 

 

Microbiological smell 

 
No visual mould 

 
Local spots of mould 

 
Light mould growth in major part 

 
Extensive/rich mould growth 
 

 

 
No rot 

 
Rot on surface

 
Rot in depth

 

 

 

Backward     

 

Rot on surface 

Rot in depth 



 

Question 13 
 

Crawl space design:

 
No smell 

 
Microbiological smell

 

 

 
 
 
 
 
 
 
 

 Case 5 
  

Crawl space design: Age 18 years   

Capillary breaking layer in ground  

Drainage system roof X 

Drainage system ground  

Surrounding ground sloping from building   

Counter floor insulated  

Inside foundation wall insulated  

Mechanical ventilation  

Vapour barrier on ground x  

Inorganic counter floor  

Inorganic slide protection in foundation wall  

Floor heating   

    
Click the image for full size  

 

 

Microbiological smell 

 
No visual mould 

 
Local spots of mould 

 
Light mould growth in major part 

 
Extensive/rich mould growth 
 

 

 
No rot 

 
Rot on surface

 
Rot in depth

 

 

 

Backward     

 

Rot on surface 

Rot in depth 



 

Question 14 

The crawl space cases were easy to assess.

 

  

   

Question 15 

What were your 

Question 16 

Kindly complete your contact information below.

The crawl space cases were easy to assess. 
 

 
1 Don't agree at all 

 
2  

 
3  

 
4  

 
5  

 
6 Completely agree 

  

What were your assessments based on? 

 
 

 
       

Kindly complete your contact information below. 
 

Company name: 

*  
First name: 

*  
Last name: 

*  
Address: 

*  
E-mail: 

 

 

 

 

 

Backward     

 

  

Backward     

Backward     



 
 

 

   

       

 

 

 
Thank you for your cooperation!  

  
Chalmers  

Department of Civil and Environmental Engineering 
  

Veronica Yverås  
veronica.yveras@chalmers.se  
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Abstract. Moisture problems in buildings are increasingly being reported 
in the mass media in Sweden, often leading to some controversial stories 
about companies and their building processes. Using building physics 
and building performance principles during the design stage can often 
prevent most problems from occurring. One of the big questions is, with 
all the available knowledge about designing a building, how can these 
problems still be occurring in new buildings? This paper explores this 
question by interviewing some engineering consultants on how they 
evaluate the performance of a building, and to what extent knowledge 
about building physics theory is being used during the design process 
to prevent moisture problems from occurring. It was found that building 
physics is not used extensively in the building industry due to many reasons. 
The lack of good design tools and the fact that clients do not request it 
are two main reasons. However, it was revealed that clients do not request 
it because they either have no interest in spending the extra money for a 
better design, or they do not know it is optional and just assume everything 
is taken account of in the fi nal design. Furthermore, the consultants do 
not advise them on the available options applicable for their particular 
design. Due to the method used to analyse the interviews, an unexpected 
relationship between education level and their perceived level of awareness 
of building performance issues emerged. It appears that the higher the level 
of education of the consultant, the more they are aware of the impact of 
performance issues in a building’s design. Their experience level does not 
appear signifi cant in this relationship, however this cannot be proven and 
will require more studies to verify.

Keywords: building physics, building performance, interviews, tools, 
consultants, education, and economics

1 Introduction
Moisture design appears to be a growing trend in Sweden. This can be explained 
by the attention from mass media that various projects around Sweden have been 
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getting. Specifi cally, projects involving mould in buildings and moisture damage 
in newly constructed buildings, largely multi-family dwellings (Jelvefors 2002; 
Luthander 2001). This trend is increasing because the media has brought it to the 
attention of the public that the consultants do not perform a moisture analysis on 
a building’s design during the design phase. The consultants admit that clients do 
not request moisture design because the clients assume that it is included in the 
normal design process (Arfvidsson and Sikander 2002, p. 14).

Building physics in Sweden is defi ned as the study of the transport of heat, 
moisture, and air through a building’s envelope in relation to both the indoor and 
outdoor climate (Hagentoft 2001). It is a key area in the development of energy 
effi cient, healthy, moisture safe and durable buildings. It is this fi eld of science 
that focuses on the prevention of moisture problems during the design phase of 
a building. Please note that the Swedish defi nition of building physics does not 
include lighting and acoustics, unlike most other countries around the world.  

In many countries, architects are responsible for the design and detailing of a 
building. In the Swedish building industry it is common that the architects are only 
responsible for the form and shape of a building and engineering consultants are 
responsible for the technical specifi cations. Recently, Sweden has seen an increase 
in the amount of mass-media attention that problematic buildings are getting; even 
to the point of being damaging for the companies involved in all phases of the 
construction (Luthander 2001; Jelvefors 2002; Samuelson and Wånggren 2002). 
One of the big questions is, with all the available knowledge about designing a 
building, how can these problems still be occurring in new buildings? 

The aim of this paper is to explore this question by interviewing some 
engineering consultants on how they evaluate the performance of a building, and 
to what extent knowledge about building physics theory is being used during the 
design process to prevent moisture problems from occurring.

The driving forces behind this study are two research projects that are 
both looking at the use of building physics based design tools for engineering 
consultants in the building industry. By tools we mean any aid that infl uences 
the design. Tools can be either computer or paper based in the form of checklists, 
graphs, tables, simulations etc. 

One project, Performance indicators as a tool for decisions in the building 
process, (Yverås 2003) deals with the problem of developing a design tool that 
will increase the application of building physics in the early stages of design. 
Performance indicators can assist in this decision-making and help to avoid 
failures that would otherwise reduce service life. Even though knowledge about 
designing a building is widely available, incorrect decisions are all-too common. 
Consequences from poor decisions can include a reduction in service life arising 
from conditions such as mould growth, rot and corrosion. These conditions can 
be avoided, but not without the application of robust knowledge based on the 
principles of building physics. However, this requires more than knowledge; it 
demands tools that designers can understand and use. It is important, therefore, to 
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have a clear picture of what is required of any decision support tool, which is why 
the interview study is important in the further development of the performance 
indicator tool.

The second project, Tools for determining the economical effects of building 
physics aspects during the building process, (Burke 2003) investigates, studies 
and quantifi es the economical benefi ts in using the knowledge from building 
physics as a design and decision tool in the building process. Problems in the 
building process related to building physics will be identifi ed in co-operation 
with the building industry. Existing calculation programs, databases, statistical 
inquiries will be compiled into useful, easy to use tool packages especially 
designed to give adequate information about the costs and risks associated with 
different designs. These interviews were necessary to gain insight into what extent 
building physics is utilised in the building industry, and what types of applications 
designers want that would enable them to apply building physics theories more 
easily to designs.

2 Method
As mentioned in the background, the two projects behind this paper are developing 
design tools to be used during the design phase. Information and insight was 
needed about the design process in Sweden as well as the types of tools that 
designers would want to use. Since these tools are intended for designers during 
the design phase of a project, we focused our information gathering on designers 
who will potentially have use for our tools. 

Of the various methods considered – for example experimental, literature 
review and surveys – the latter seemed to offer most promise. Due to the nature of 
our enquiry, we felt that an exploratory survey was more likely to reveal the key 
features of the underlying problem than either of the other methods.

Questionnaires were considered as the primary method for gathering 
information. However they have the disadvantage of being too linear. In addition, 
the information generated could not be anticipated, so it was not considered 
appropriate to gather the information by questionnaires. Interviews were more 
appropriate by allowing us to be dynamic, with the ability to probe interesting 
information to a much deeper level than is possible by questionnaires.  

The questions for the interviews were formulated around two themes. One 
was to get a picture of the consultants’ conditions used to evaluate the performance 
of a building (i.e. their perception of the building process), and the second was to 
determine their level of comfort and experience in working with building physics 
issues. 

To ensure that all interviews yielded comparable results, they were based 
on fi ve principal questions with about 26 more specifi c questions. They consisted 
of open and closed questions that allowed us to assess various aspects of the 
interviewees unbeknownst to them. For example, a respondent can be assessed on 
his or her familiarity with the latest information and technology without directly 
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asking. The closed questions allowed us to categorise the interviewees into 
predetermined categories. The fi ve principal questions were:
1. How would you describe the design process of a building? 
2. What are the most important performance requirements when designing a 

building? 
3. How do you evaluate the performance of a building? 
4. What infl uences do economical aspects, such as market conditions and 

market trends have on the design of a building? 
5. Do you and your co-workers feel comfortable working with building physics 

issues, i.e. heat, air and moisture issues?

Interviews were conducted with eight building consultants over the span 
of two weeks and all consultants answered all of the questions. Two consultants 
declined to be interviewed because they were too busy but were positive to the 
interviews and recommended alternative people, whom accepted. All but one, the 
building physics professional, were chosen at random with no information about 
them prior to the interviews. It was decided to stop conducting interviews at eight 
because after the 5th or 6th interview very little new information was obtained.

The results were analysed based on the grounded theory approach, which 
“is a method for discovering theories, concepts, hypotheses, and propositions 
directly from data rather than from a priori assumptions, other research, or 
existing theoretical frameworks” (Taylor and Bogdan 1998, p. 137). In other 
words, there were no assumptions made as to what results we would obtain prior 
to the interviews. 

3 Results and discussion

3.1 Relationships
Table 1 shows the profi les of the interviewees. Category refers to their general 
level of ability regarding the application of building physics to a design. 
Category A covers expert engineering consultants, category B covers the average 
ability expected from a building engineering consultant, and category C covers 
engineering consultants with very little ability. Some of the consultants indicated 
that experience is very important when dealing with the performance of a building. 
However, this was not apparent when analysing the interviews. Arfvidsson and 
Sikander (2002, p. 16) also found that consultants want more feedback on past 
projects, which supports our fi nding that they do not get adequate feedback on 
past projects, hence decreasing the value of experience. When looking at the 
experience level compared to the perceived level of awareness, i.e. the whole 
picture of the design process combined with a comprehension of complex 
performance issues and an awareness of the current levels of technology base, 
there did not appear to be any pattern. However, the level of education appeared to 
be related to their level of awareness. Figure 1 shows how we perceived the level 
of awareness for each person interviewed.
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Table 1. Profi les of those interviewed

Category Education
hh Experience

A
PhD in building physics 20 years

Civil engineer + extra education building physics 15 years

B

Civil engineer 30 years
Civil engineer 15 years
Civil engineer 15 years
Civil engineer 7 years

C
2-year engineering diploma 6 years

High school 40 years

Figure 1. Perceived correlation between level of education and awareness

It is important to remember that the engineers in category C, and part of 
category B, did not have access to an expert. This could affect the results in this 
study since a lot of education fl ows internally from the experts in the companies. 
Other companies with experts and category C employees working together may 
have a totally different level of awareness due to the expert’s infl uence. More in-
depth studies would be needed to investigate this relationship further.

There also seemed to be different attitudes towards the required time directed 
to handle moisture control issues during design. Those within category A said 
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that they would like to have more time whereas those in category C did not even 
allocate time especially for these issues. This was stated despite that they stated 
earlier that these issues are highly prioritised. They did however motivate it by 
using safe and well-known designs, referring to their own experience. However, 
their experience on well-known designs can be questioned as the consultants 
rarely have the time or the opportunity to return to, or follow-up projects that were 
fi nished 10 years ago or more. In practice, the long-term design for engineers is 2 
years, according to one of the interviewed engineers.

 When asked who is responsible for most of the performance problems 
experienced in buildings today, the consultants in categories A and part of B 
were also including themselves when asked. This was the opposite of the others 
(categories C and part of B), who blamed anyone else but themselves. These 
results partly agree with Arfvidsson and Sikander (2002, p. 13) who concluded 
that no actor in the building industry is willing to take responsibility for moisture 
prevention issues when designing a building.

Some of the questions dealt with how comfortable the consultant feels if they 
must work alone on problems dealing with building physics. In most cases the 
answer to this question was related to whether or not they have access to an expert 
in building physics. If the consultant had access to an expert, they were usually 
not comfortable working with these issues and usually sought advice from their 
expert before fi nalising a design. The consultants in this category acknowledged 
that since the media attention began, they have felt even less comfortable with 
these issues and rely heavily on their experts. Those without an expert in-house 
were more prone to saying that they felt very comfortable with building physics 
issues.

The group within the profession that has lower education level relies mainly 
on their experience. But if professionals rely mainly on experience, how do they 
know when there are gaps in their knowledge or whether some of their standard 
rules are no longer applicable (Barrett and Stanley 1999). Decisions made without 
knowledge of their consequences can have dire effect (Ellis and Mathews 2001). 

One might easily draw the conclusion that people with less knowledge 
would suffer from insecurity more so than those with expert background. This was 
not the case during the interviews. Members of group C, showed a great deal of 
confi dence and no worries about the complexity of building physics. Confi dence 
is defi ned as the strength of a person’s belief that a specifi c statement is the best or 
most accurate response (Peterson and Pitz 1988). In other words, it is a measure 
of how strongly they believe what they say. So far, no study has been performed 
that examines if there is any correlation between mistakes in design and the level 
of knowledge of the designer. However, there is a great deal of research, which 
indicates that people are often more confi dent than they are correct (Blanton et 
al. 2001). Blanton et al. (2001) states that educators may meet obstacles from 
people’s overconfi dence about their knowledge when trying to educate them. As 
the individual with the PhD said, “People think they can moisture proof a building, 
but they can’t and I have to correct the problems later, which takes a lot of time.”
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3.2 Consultant/engineer and liability
Noting that moisture analysis requests began increasing after the media reported 
moisture problems, we began to wonder what the role of a consultant is in the 
Swedish construction industry and what their liabilities are. One tool used is 
called ABK 96 (Byggandets kontraktskommité 1996). It is a standard contract 
template that explains in detail how engineering and architectural consultants 
should conduct themselves. It also describes the limitations of liability that a 
consultant has. Most consultant companies use this voluntary contract to guide the 
consultants and also the client – consultant relationship. Each party is informed of 
what is expected of them by the other.

Despite this, there also appears to be some confusion around the labels of 
consultant and engineer for consulting companies, even though it is not spoken 
of. A consultant is defi ned as “an expert who gives advice.” (Princeton 1997a) An 
engineer is defi ned as “a person who uses scientifi c knowledge to solve practical 
problems.” (Princeton 1997b) Paragraph four (Byggandets kontraktskommité, 
1996, p. 5) states that the consultant must be competent, professional and have 
adequate knowledge to consult in the areas of their fi eld. However, overconfi dence 
and lack of awareness in building physics on the part of some consultants, can 
cloud the issue of a consultant having adequate knowledge for building physics 
issues.

From the interviews, it was obvious that many consultants expect to be told 
what to do by the clients without informing the clients of what is available. In this 
way some of the consultants take on the role of engineer. This change in attitude 
is refl ective of the traditional methods of building design consulting when a lot 
of information was unknown and the designs were simpler. An example was one 
consultant who disclosed technical solutions to example problems during the 
interviews that are proven to lead to mould and moisture problems in houses. 

If a client is an experienced buyer or an expert client, they will have 
predetermined tasks and technical solutions available for the consultant since they 
are usually aware of all the major problems and their solutions. However, not all 
clients are fully informed, almost all have some weakness, for instance the science 
of building physics is not known by a typical client. A statement during one of the 
interviews, “Clients don’t know enough (about building physics-issues) to have 
any requirements” supports this idea. 

There are occasions where poor decisions have been made that have lead 
to a failure in performance. This was exemplifi ed during the interviews where 
one described how she strongly advised the client not to follow the architects’ 
direction of having the outside wall continue into the ground without a base. Two 
years later the predicted problems arose and the plaster closest to the ground fell 
off due to frost erosion. Clearly this was a case where the client was not used to 
handling these issues, lacked the experience to make a correct decision and the 
consultant failed to present the information. The reasons are considered to be due 
largely to the inability of design engineers to encode and present the consequences 
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of a decision. By improving the quality of information during the design process, 
the client is better equipped to understand the different issues implicated in the 
project (Barrett and Stanley 1999). The consultant above admitted that by having 
real life cases to show, including a cost of the consequence, the outcome of this 
case might have been different.

The consultant in this case was not liable for the damages that incurred later 
because the consultant, fi rstly, recognised the problem and secondly, recorded 
their disagreement with the client in the protocol during the design phase. The 
consultant would have been liable for the damages if they did not inform the 
client of the problem, either voluntarily or unknowingly, i.e. was not aware of the 
consequences of a particular design feature. This case was not typical in that the 
consultant did a moisture analysis to determine the consequences. 

The client usually assumes that the consultants they hired will solve all the 
known problems. The reality is that most engineering consultants, not all, are 
actually operating like engineering fi rms, in that they do not analyse a building 
from a building physical point of view unless asked specifi cally. Their reasoning 
being that changing the design requires more time, hence more money that clients 
are unwilling to pay. The result of this is that the minimum amount of work is 
done when analysing a building’s design and the clients get very upset when 
problems occur. 

One fact that they are neglecting to consider is that the cost of the building 
might actually decrease if the design is optimised using building physics. This 
could be in the way of material substitution, removing unnecessary components, 
or utilising a quicker construction method. In the U.K., quantity surveyors are able 
to calculate the cost difference of various designs. This position does not exist in 
Sweden so it is very diffi cult for engineering consultants to motivate changing the 
design based on building physics theory because of the diffi culty in calculating the 
savings or extra costs associated with the changes.

3.3 Design tools
When asked what design tools were used when conducting the evaluation of a 
building from a building physics perspective, most replied that they did use some 
very basic ones. Two people, including the expert, built their own design tools 
from Delphi Pascal or Excel spreadsheets. Only the expert had a ‘wish list’ for 
what was desired in future tools. The others said they did not know since either 
their local expert uses the tools, or they did not use any.

When those who replied that they did not use any design tools were asked 
why, they replied that they were too costly to buy, too diffi cult to learn, required too 
much time to run the simulations, and not enough time was allocated to evaluate 
a building’s design properly. These results follow Hien et al. (2000, p. 727) who 
found that “Most fi rms view the use of simulation tools as involving extra costs 
and effort but with little recognition and appreciation from the clients.” 

The most desired features of any computer-based tool, according to the 
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consultants, were that they had to be easy to use in terms of low level of input and 
output data. These are statements that contradict with what is typically produced 
by researchers. Researchers have too often failed to deliver numerical models and 
tools that are user friendly and that take into account the education and expertise 
of the likely user (Goodings and Ketcham 2001). Hien et al. (2000) reveals that 
designers regard current tools as user unfriendly with very steep learning curves; 
moreover, the output generated could be extremely diffi cult to interpret and utilise 
for design decision-making. Ellis and Mathews (2001, p. 1011) also confi rm this 
and have identifi ed that tools of today are: 
- complicated (not user friendly)
- time consuming (too much input)
- require a high level of theoretical knowledge (to make the input and to 

interpret the results)
- Information needed is not available during preliminary design.

Regarding the wish list of the tools the answers can be categorised after what 
level of education the respondents have. Those within category C had no wish 
list. Category B directed their interest to simplify computer programs in order to 
make use of such programs, whereas category A people had a bigger picture and 
directed the use of wish tools that could be used to persuade the clients for better 
performance. Examples of these are tools that can show the consequences of a 
chosen design in terms of reduced service life due to mould, rot or corrosion and 
cost analysis programs. Energy calculation, heat fl ow and airfl ow programs were 
not mentioned by any of the interviewees despite the fact that these topics all fall 
under the area of building physics.

Building industry related journals were also mentioned as being a tool that 
provides them with useful information. However, the interviewee did not state 
what specifi c types of journals they referred to.

In another civil engineering area, geotechnics, a trend is the growing number 
of experts (post doctoral) joining conventional fi rms instead of making a career 
within the university (Goodings and Ketcham 2001). This trend helps bring 
existing research into practice where it is most needed. Augenbroe (2002, p. 891) 
agrees with the idea of making more use of experts in the industry stating, “The 
latter trend recognizes that the irreplaceable knowledge of domain experts and 
their advanced tool sets is very hard to match by ‘in-house’ use of ‘dumbed down’ 
designer friendly variants”. This difference between having a design tool, versus 
having an expert in the company is signifi cant, and this was refl ected in the results 
of the interviews. All consultants who had access to an expert made use of them 
constantly, and all stated that they would be uncomfortable working with moisture 
control problems if they did not have access to their expert. They much prefer 
having the expert than using a simplifi ed tool.
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3.4 The bigger picture
Despite advances and knowledge in the construction industry in the past 
decades, it appears that this knowledge is not generally implemented until it 
becomes a requirement. This was explained by Becker (1999, p. 526) who states, 
“incorporation of new concepts into an existing professional activity fi eld can be 
accomplished only if the right infra-structure, composed of some basic conditions, 
is present:
- the acting parties recognize the signifi cance of these concepts and their 

contribution to improving the results of their work,
- clear routines and friendly working tools for smooth incorporation of the 

new concepts are available, and
- young new professionals are educated to regard the new concepts as an 

integral part of the profession.”

These statements can be seen in the Swedish construction industry today. 
From the interviews, we saw that some recognise the signifi cance of the concepts 
of building physics and building performance. Most indicated that there were no 
good design tools available for designing a performance building. Some did not 
even know that there were tools available on the market today. 

With the third point, compliance and company tradition will quickly change 
the young professionals into operating like the other members of a company. Even 
if they want to make changes according to what was learned in school, a higher 
power can quickly overrule any decisions that they feel are unnecessary. The 
younger workers learn quickly not to make these decisions again in the future.

4 Conclusions
The interviews conducted with the engineering consultants in the Swedish 
construction industry suggest that experience might not necessarily be important 
when it comes to consultants and the topic of building physics performance. In 
addition, the higher educated consultants felt less comfortable and showed less 
confi dence when working with these issues than their less educated counterparts. 
Their comfort and confi dence levels were also inversely related to their amount 
of access to an expert in building physics, i.e. the more access they had, the less 
confi dent they were in working with these issues. The consultants with no expert 
support felt very confi dent and comfortable in working with these issues, however 
the quality of their work could be questionable due to a lack of feedback loops in 
the system. Awareness, education, and a view of the bigger picture are all needed 
to effectively deal with performance problems in the current construction industry. 
However, even if they possess all of these traits, there are many obstacles out of 
their control that can prevent an effective analysis of a building’s design. Some 
of these obstacles include having to make do with the amount of time allocated 
to the analysis phase of a building, meeting the client’s demands, the architect’s 
demands, the level of competence of the consultant, whether or not they have 
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access to an expert in building physics, and the types of tools they have at their 
disposal.

The interviews indicate that problems are still occurring in new buildings 
today because either clients do not request the correct design options, the designers 
do not include these options in their designs due to the extra time it takes, or the 
constructors disregard some basic issues which lead to problems during the 
construction phase. Sometimes clients do not request extra design work because 
they believe it increases the total cost and they will not be personally affected by 
the improvements, for example clients who build public housing, or apartments. 

Further research is needed to determine if there is a relationship between the 
level of education and the level of awareness in building engineering consultants 
and the effect that their confi dence levels have on clients. 
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SUMMARY:  

The use of Artificial Intelligence (AI) has a vast area of application. In this research project its application is 

explored to package existing experience from physical objects, building parts, in order to predict the service life. 

The focus is to facilitate decision during the early stages of design in order to prevent moisture and mould 

problems. A prototype is going to be developed by using the crawl space design as an example why a literature 
review of two different AI-systems, Case-Based Reasoning (CBR) and Neural Networks (NN), has been 

performed. Due to the fact that the area of service life prediction is a fragmented area of knowledge, the NN was 

found to be the best choice. The requirement of a user-friendly tool that does not need expert knowledge to be 

handled also made the NN-method more favourable.  

 
1 Introduction 
 
1.1  Background and research context 
It has been found that practitioners tend to rely on their own experience (Burke and Yverås, 2004), (Leondes, 
2002), where new design problems are often solved by the reuse of similar previous cases (Andrade et al., 2003). 
However, their experience base is not completely documented. They have drawings, computer files, personal 
notes or memories but the most important ingredient is missing – the outcome. The designer has no knowledge if 
the design has been affected by moisture and mould problems and as long as no complaints reaches the designer 
the designer takes it as a confirmation that nothing is wrong. This is a very dangerous assumption to make, as the 
effects of moisture problems tend to occur after a longer period of time. By that time, the guarantee has expired 
and the customer does not have a reason to turn to the consultant company for any compensation. This is an 
attitude that is forced by lack of time, which later might have turned into an accepted way of working.  
 
There are basically three sources of knowledge to assess a design or a part of a building, fig 1. In this project the 
focus is to capture the knowledge from one of them - the experience from physical objects, by using Artificial 
Intelligence and also to find out which the implementation parameters are.  
 
 

 
 
 
 
 
 
 
 
 
 
FIG. 1: Three sources of knowledge 

 
The research questions are formulated as follows:   

• How to make service-life predictions of building parts by using the technology of Artificial 
Intelligence? (1) 

• What are the conditions to attain an implementation of an AI-system in decision processes concerning 
moisture related service life issues? (2)  
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1.2  Research objectives 
The aim is to examine the application and implementation possibilities of an AI-technique to predict the service 
life, by capturing experience from physical objects.  The specific objectives of the research are: 

• (A) Identify an AI-systems that could be of interest for the research task and choose best suited.  
• (B) Exemplify the chosen system by developing a prototype.  
• (C) Examine the potential of an AI-tool in a design process with respect to users, needs and reliability 

of the tool.  
 
However, only the result of the first objective (A) is here presented in this paper. 

1.3  Scope of the research – objective A 
The scope of the research is directed at exploring an AI-tool to predict the service life of a design relating to 
moisture and mould problems. A crawl-space design will be used in order to build a prototype that can be tested 
on users further on in the project. This means that it can be difficult to draw some conclusions on how it will 
respond to a less extensive building part.  However, this might provide some general conclusions about data 
extraction of building parts in order to generate service life knowledge. The system will not include the aspects 
of maintenance or workmanship, which to some extent affects the service life.  

1.4  Methodology – objective A 
In order to choose an AI-system, a literature study to explore different AI-systems was carried out. The goal was 
to find two systems and then compare them to each other. Also a survey of previous applications within the 
construction area was made. The intention was to find out how different AI-applications behaved, which might 
be helpful in selecting an AI-system. Prior the decision of which is the more appropriate system, some general 
requirements had to be stated. With support from literature, these requirements were made with respect from a 
user perspective and the nature of the area of interest. Some consideration has to be taken to which building part 
that is chosen to be represented in the prototype. In this project the choice fell on the crawl space. It is favourable 
design as the service life is not heavily dependent of maintenance. By this it is possible to minimise the effect of 
maintenance on the service life 
 
2 Results 
AI has been defined as a computer or a software system, with built-in-knowledge that has the 
ability to imitate a human expert within an area (Thomas, 2003). There are mainly two 
branches of AI, Expert systems and Machine learning, fig 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG. 2: Different systems of Artificial Intelligence 

 

Expert systems are defined as extracting knowledge from human experts. This knowledge is a combination of a 
theoretical understanding of the problem and their own experience. This reliance on human expert knowledge is 
a major feature of expert systems (Luger and Stubblefield, 1998). Expert systems are also known as knowledge-
based systems. However there is a method that does not have to solely rely on human expertise, which could be 
applied on this research project, called Case-Based Reasoning (CBR). The difference is that the knowledge is not 
compiled in rules, but stored as a set of structured cases (Chen and Burrell, 2001).    
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Others: 
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Another branch of artificial intelligence is called machine learning. Instead of extracting knowledge from human 
experts this system extract knowledge from data. This means that it is possible to discover relationships within 
the collected data area and we can determine the factors that influence the outcome (Negnevitsky, 2002). It is 
also called knowledge discovery. This technique is becoming increasingly more popular, especially in areas 
where there is large amount data available but the knowledge is poor (Cios et al. 1998).  
 
In this paper a closer look is taken on Case-based Reasoning and Neural Networks.   

2.1  Neural Network (NN) 
The application of NN has grown to be a very popular method when solving different kinds of problems in 
various areas, like finance, engineering and medicine. The most appreciated feature is its learning and 
generalization ability (Cios et al. 1998). NN have proven to be successful in prediction, classification and 
clustering problems. It can address prediction problems when the output is continuous or act as a classifier when 
the output is binary (Negnevitsky, 2002). According to Leondes (2002) the application of NNs have great value 
when it is difficult or impossible to uncover relationships. The method is also helpful even when the data is noisy 
or incomplete.  
 
The NN technique is inspired by the way a human brain works when solving problems and how it learns from 
experience. A network contains of several nodes, called neurons that are organised in one or several layers. 
Usually there is an input layer and an output layer, layers in between are called hidden layers. The neurons are 
all linked together between the layers where the connections have a weight (w) attached, which is set through a 
learning process of the network. They express the strength/importance, of each neuron input and have been 
referred to as the ‘intelligence of the network’ (Kauko, 2003). The structure of neurons, process a numerical 
signal coming from outside and sends it through the system and produces an output signal.   
 
 
 
 
 
 
 
 
 
 

FIG. 3: A simple model of a neural network. 

The process of creating a NN includes a three-step procedure. First of all it has to be decided upon what kind of 
architecture to be used. According to Russel (2003) there are three different classes; single-layer feedforward 
networks, multilayer feedforward networks, and recurrent networks. Kauko (2003) adds a fourth called 
competitive networks. The multilayer feedforward network, as in fig 3, is usually preferred as it can handle non-
linear data. A structure with one hidden layer can handle continuous functions and discontinuous functions by 
two hidden layers (Negnevitsky, 2002). There are no guidelines of how many neurons and layers should be used, 
as it is a problem not yet well understood (Russel, 2003). If a structure has too few hidden neurons the network 
will overgeneralize (Arditi and Tokdemir, 1999). A general rule of thumb seems to be that the network tends to 
grow with the size of input parameters, which can result in several neurons in several layers (Negnevitsky, 
2002). However, if the number of hidden neurons is too big there might be a problem of overfitting. The network 
might just memories all the training examples and thereby prevent it from generalising (Negnevitsky, 2002).  
 
To create the memory in a NN, the system has to undergo a learning process. It is the most important feature 
with NN - the ability to learn and being able to improve with training and experience (Borrow, 1996). The 
second step in developing a NN involves the choice of an appropriate learning algorithm, which by nature can be 
classified as either supervised or unsupervised learning (Kauko, 2003). Among hundred different learning 
algorithms available, the most popular is back-propagation (Negnevitsky, 2002). It is a supervised training 
method of multilayer neurons (Russel, 2003). The general principle of learning is presenting an amount of cases 
containing input data with associated output data.  
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When the learning algorithm and architecture of the network is decided upon the final step takes place, which is 
the training process. In a back-propagation network the input pattern is propagated through the network, which 
has been assigned initial weights, where after an output pattern is generated. If the resulting output pattern differs 
from the desired output an error is calculated. This error is then sent back through the network where the weights 
are adjusted as the error is propagated (Negnevitsky, 2002).  It is through repeated adjustment of these weights 
that is the core of the neural network learning process. Wieland (1987) describes this as a ‘curve-fitting’ 
problem. This viewpoint allows us to look on generalization as a non-linear interpolation of the input data 
(Russel, 2003). This process continues with a set of cases, often in several loops, until the error is sufficiently 
small. At this point the network is trained managing solving new cases that has not been presented to the 
network before. However, a network can also be over trained with too many cycles of the same cases and 
thereby have an over-fitting problem as described earlier. Although, this is not a big problem as there are 
procedures to overcome this problem (Russel, 2003). Before any system is used in a “sharp situation” it has to be 
validated. This is usually done by presenting an amount of new cases and then observe how the system respond.  
 
Despite all the advantages of using NN, there are some weaknesses to be aware of. Conflicting training sets, 
when there are two or more identical input patterns with different outputs, prevents the system from ever 
learning the application (Skapura, 2002). Too many parameters can cause an over-fitting problem (Russel, 
2003). Another disadvantage often mentioned, is that NN acts as a black-box. It is stated that neural networks are 
not transparent; a user will not be able to understand and explain the prediction result (Kim, G.-H. et al., 2004), 
(Kauko, 2003). NN are also time consuming to develop as it is afflicted with a trial and error process (Arditi and 
Tokdemir, 1999), (Thomas, 2003). 

2.2  Case-Based Reasoning (CBR) 
This is a method that uses past experience of different cases, just like the NN. However this method does not 
create a memory structure, it is founded on a library of different cases. A CBR system looks for the most similar 
past case in a database system to match the current problem. Leondes (2002) describes this as a four-step process 
that starts with an input of information about the current problem, the new case. The system then tries to find a 
similar case within the case base, which is followed by an adaptation process of the found case/cases to fit the 
new case. Finally, the system provides the user a suggested solution, see figure 4. This tool is frequently used in 
help-desk applications when companies, in contact with users, needs to solve product problems. Also the 
juridical area takes interest in this system especially in situations when formulating legal reasoning through 
precedent (Luger and Stubblefield, 1998).  
 
 
 
 
 
 

FIG. 4: The structure of a case-base reasoning system / case-based reasoning approach 

A CBR study can be depicted through three major activities. The first step is related to developing the case 
library. The cases to be stored are experience represented by different cases with different outcomes. This first 
step has a major impact on how the system finally will behave. It is a structural issue of the case library, which is 
known as the indexing problem. According to Chua et al. (2001) it has two aspects; appropriate labels to each 
case and the organizing of the cases. The labeling involves defining features names, deciding feature value 
definitions and deciding feature matching approach. The organization of cases in the case library can be done in 
basically two ways, either trough a flat case base or a hierarchical structure. A hierarchical structure generates a 
more efficient retrieval process than a flat case base, that has to search through the whole case library. However 
a hierarchical structure demands more knowledge about the area as the cases are grouped into categories 
(Sankar, 2004), (Chua et al., 2001). The indexing of a case library is of great importance in order to create an 
efficient and accurate search through the case library and retrieval of cases. This is done by assigning weights to 
the features, which are the parameters of each case. (Sankar, 2004), (Arditi and Tokdemir, 1999) According to 
Sankar (2004) and Arditi and Tokdemir (1999) the assigning of indexes is still largely a manual process and 
relies on human experts, however, various attempts at using automated methods (algorithms) have been 
proposed. By algorithms it is possible to generate weights that reflects the characteristics of the case library 
(Yau, 1998).  

 
The second step involves the retrieval process. Of several retrieval methods, the most common is the k-nearest 
neighbor. The case retrieved, is the one that have the largest weighted sum of its features matching the current 
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case. (Sankar, 2004) To have more than one case retrieved it is possible to use a similarity score which have a 
value range from 0 to 1. The similarity score describes how well it agrees with the target case, where value 1 
corresponds to an exact match (Chua et al., 2001). When a new case is presented to the system, the CBR system 
retrieves one or more stored cases similar to the new case. This according to the percentage similarity, similarity 
score, calculated by a user-defined similarity function (Kim, G.-H. et al., 2004). A similarity score target has to 
be set before a search is initiated. A higher target will narrow down the number of retrieved cases.  
 
In the final step, a case adaptation of retrieved cases has to be performed. Sankar (2004) defines the case 
adaptation as the process of transforming a solution retrieved into a solution appropriate for the current problem. 
If the system is unable to find an exact match, the tool has to make a case adaptation. This can be done either 
manually or by a rule-based system. The latter usually requires experts or system designers to be handled. As a 
result, many CBR systems work primarily as a case retrieval and proposal system and leave the adaptation 
process to be undertaken by the user (Chen and Burrell, 2001).  
 
Also CBR has some weaknesses to consider. It is easy to add new cases, as they appear, however this feature can 
also be a disadvantage for the system. If a case is added to the system already existing in the case base with a 
different solution, it might cause a conflict. Maintenance of the case base must therefore be performed regularly, 
as it safeguards the stability and accuracy of CBR systems (Sankar, 2004). Like NN, CBR also lacks guidelines - 
indexing and retrieval combination has to be tested, in order to obtain best possible results (Arditi and Tokdemir, 
1999).  

2.3  Requirements of the AI-tool 
Before choosing any AI-system to work further on, it is necessary to have a closer look on what might be 
required. The main goal is to translate existing experience into a useful format of information for the end-user. 
Focus is directed at the early stage of design where choice of systems is made. Designers usually apply their own 
experience to new cases (Burke and Yverås, 2004), however, their experience is not documented. A system that 
could predict the condition of a design, concerning moisture issues, would therefore benefit safer choices. 
Service life predictions described in years is not possible, due to the nature of available sources from where data 
can be extracted. The conditions are depicted in terms of presence and extent of rot, mould and smell.  
 
It is of great importance that the prediction results are easy to understand and does not require further processing. 
Also the input procedure should require minimum of time. Several studies have proved that implementation of 
new tools are inhibited by steep learning curves, difficult interpreted results, complicated and the need of expert 
knowledge to be handled (Hien et al., 2002), (Ellis and Mathews, 2001). Itard (2003) stresses the importance of 
winning confidence in the tool by users. If the user does not immediately understand the results of the tool, the 
user will be inclined to reject the software. An aim would therefore be to have a tool, which allows elaborating 
with pre-chosen parameters to view how it affects the outcome of chosen parameters after a number of years.  
 
The area of service life prediction is in it self not well understood, as all the relationships between durability of 
materials, agents and mechanism are far from completely mapped out. It is therefore difficult to have any prior 
reliable knowledge in how a design will behave and in what kind of condition it will be, after a number of years. 
Consequently the AI-tool must have the ability to distinguish important parameters from less important 
parameters. Another issue is the ability to have a tool that can be developed over time, in order to add new 
experience. As time goes by, more cases are available and also cases further down the time line. It is important to 
have a range of cases that can cover the whole service life.  
 
The system must also be reliable in delivering predictions and prove to be helpful in the early stages of design. It 
is an important aspect when considering the implementation process, as designers believes that they can handle 
moisture issues without any aid (Burke and Yverås, 2004). An AI-tool must, at least, be as good as human 
experts or even better in order to gain trust from the expected users of the tool.  
 
2.4  Previous application of AI within the area of construction 
Literature provides a great range of examples where AI has been applied. Behaviour of materials can be 
predicted through AI, such as concrete strength, cracking risk of concrete (Lai, 1997), (Dalmagioni, 2001), (Kim, 
J.-I. et al., 2004). NN seem to be the most popular approach here, which might be due to the extensive available 
amount of data. The service life area has also been subject to testing AI-tools, so far only within the area of 
infrastructure. In this area Melhem and Cheng (2003) and Morcous (2002) managed to reach a level of 50% 
respectively 70% correct predictions by using CBR. NN seem to gain more interest when it comes to energy and 
predicting i.e. the heating demand of a building (Olofsson, 1998), (Mihalakakou  et al., 2002). These systems 
proved to perform very well with an error of 5-8%. The CBR-technique has been frequently used within the 



 

design area (Andrade et al., 2003), (Yau, 1998). Usually this can be done by regular calculations and therefore it 
is merely a way of choosing a design more efficiently in order to avoid iterative calculations. The AI-technique 
is not used here to find knew knowledge. This is not the case when it comes to bidding and predicting 
construction costs. The area is highly complex and is usually handled by experts who learned through 
experience. Chua et al. (2001) uses CBR to facilitate the decision-making in a bidding process in order to be the 
winning contractor. The system provided 55% winnings. Kim, G.-H. et al. (2004) tested both CBR and NN in 
developing a construction cost estimating model, which resulted in an error rate of 4,8% and 3,0%. Another 
research project aimed at predicting the outcome of construction litigations (Arditi and Tokdemir, 1999) where 
both CBR and NN where applied on the problem. The best prediction result was obtained from the CBR system 
by 83%. The NN-application only delivered 67% correct predictions. In table 1, seven of the applications from 
above are presented, the others did not provide enough information.  
 

Application Method 
Number of 

input/output 
Number of 

cases 
Correct 

predictions 

1. Concrete strength (Lai and Serra, 1997)  NN 8 / 1 17 95% 

2. Concrete strength (Kim, J.-I. et al., 2004)  NN 9 / 1 24 96% 

3. Litigation prediction (Arditi and     
    Tokdemir, 1999)  

NN 
45 / 1 102 

67% 
CBR 83% 

4. Bidding (Chua et al., 2001)  CBR 30 / 2 - 55% 

5. Construction cost (Kim, G.-H. et al., 2004)  
NN 

12 /1 530 
97% 

CBR 95% 

6. Design (Yau, 1998)  CBR 21 / 12 254 62% 

7. Infrastructure deterioration (Morcous, 2002)  CBR 17 / 1 289 70% 

TABLE 1:  Comparison of different applications 

 
It is difficult to draw some general conclusion out of table 1, as the chosen architecture of NN and indexing of 
CBR plays a major part in how well the systems performs. However, one might observe that the number inputs 
and number of cases has an impact on the prediction results. A larger number of inputs require a larger number 
of cases for both AI-systems. Application 1 and 2 seems to cope with a rather few cases and still generate good 
prediction results. This might depend on the fact that the cases are retrieved from laboratory measurements, 
which can be considered as high quality data. Both input and output data are generated in a controlled 
environment. Another observation is that application 5 shows that with a great number of cases the difference in 
prediction results, between CBR and NN, is rather small.  

3 Discussion  
There are a number of differences between CBR and NN-systems. The major difference is how they both operate 
in order to make predictions. The NN uses a self-learned memory structure whereas CBR stores cases in library. 
If one studies the nature of the areas of application, it is noticed that CBR is often preferred where the knowledge 
is well covered. In order to structure and indexing a CBR-tool, it is necessary to have some knowledge of which 
parameters and to what extent they will have an impact on the outcome. However, if the knowledge is 
fragmented, NN would be preferred, as it has the ability to extract knowledge from an amount of data. The same 
reasoning goes with setting the weights. When using the CBR-technique the assigning of weights are often done 
manually. To decide weights manually requires expert knowledge, which is not recommendable. As Leondes 
(2002) remarks, extracting knowledge from human experts is associated with many problems and shortcomings. 
One can obtain substantially different answers from different experts and even the same expert can provide 
different answers over a period of time. Altogether, a CBR system requires a well-known knowledge domain, 
whereas a NN does not require any prior knowledge of the domain. “Unlike expert systems, neural networks 
learn without human intervention.” Negnevitsky (2002) 

One drawback of NN is the lack of transparency, as the user cannot trace the reasoning process (Chua et al., 
2001). The knowledge is embedded in the network and cannot be broken down in pieces, to be studied in detail. 
It is argued that CBR better can explain how it arrives at a particular solution by retrieving a description of a 
similar case, Kim, G.-H et al. (2004). This is however not completely true, as the user has the possibility of 
elaborating with input parameters and thereby study the different outcomes.  
 



 

When looking from a user perspective, a CBR-system requires more prior knowledge than the NN-system to 
handle the prediction results. Cios et al. (1998) states that the application of NN is useful when the end user lack 
of experience. The CBR leaves the adaptation of retrieved cases to be handled by the user. In the NN-system the 
adaptation is considered to be done through its’ generalisation ability. This feature can though be a drawback if 
the input pattern is out of range from the data sets the NN is trained for, which is a result of the black-box 
behaviour (Olofsson, 1998).  
 
There is no given map on how a NN nor a CBR-system should be designed. Applying these methods on a 
problem may therefore result in several attempts before a suitable architecture or indexing is found. Kim, G.-H. 
et al. (2004) evaluated 75 different NN models to establish the best combination. Another issue is the updating 
of the systems. Kim, G.-H. et al. (2004) claims that it is easier to do on a CBR system as the NN system requires 
retraining and retesting. The retesting process is something that a CBR-system also should undergo, to validate 
the stability of the tool. Both systems must go through a maintenance procedure every time new cases are added 
to eliminate the risk of conflicting cases.  

4 Conclusions and future work   
“Forecasts of service life should be viewed as indicative and decisions should be guided, but not dictated, by the 
results.” (ISO 15686-1, 2000) The reason for this statement is that it is impossible to calculate the service life 
through existing theoretical knowledge. It is still difficult to generate safe and precise predictions, due to lack of 
knowledge still existing within this area. It is like predicting the end of a book with missing chapters. This is the 
main reason why the neural network is considered to be the best choice for further work in the project. The 
second reason is that CBR requires more prior knowledge, than NN, of the user when it comes to evaluating the 
predictions. 
 
The NN will be built in a software shell, called Neural network toolbox in MATLAB. This will be preceded by 
an extensive data collection, where 300 cases is needed. It is limited to documented experience, which is usually 
rare to be found within the construction sector. However, two different sources have been found. One of them is 
a governmental fund (Småhusskadenämnden) where homeowners can turn to for financial aid when their homes 
have been moisture damaged. The fund has an extensive archive of documented cases, where every case has 
been evaluated and described by damage controllers. Anticimex, which is a consulting firm within moisture 
damage evaluations, is the other source of experience. Both sources have documented cases covering entire 
Sweden. 
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ABSTRACT 

The purpose of this paper is to explore the possibility of using a tool based on Artificial 

Intelligence (AI) and real life data. The aim is to develop and analyse one AI-method for one 

design part of a single-family house. Real life data from documented experiences have been 

used as training data to develop a neural network to predict the performance of a specified 

design part, in this case, the outdoor ventilated crawl-space.  

 

The results of this study indicate that this is an approach that could usefully be developed 

and investigated further.  The tool managed to predict smell 100%, mould 76%, and rot 92% 

correctly.  

Keywords 

Performance prediction, Artificial Neural Networks, Crawl-space  

 

INTRODUCTION 

Many design mistakes could have been prevented through an understanding of how 

different designs perform, by applying basic knowledge of building physics and/or by 

learning from experience. It is, however, difficult to capture and learn from real life data, as 

this would require the use of many cases involving several parameters and a large capacity 

to process. The retrieval of real life data regarding moisture performance requires time as 

moisture problems can take several years before they are revealed. Even if all of this was 

managed, the distribution of the knowledge remains to be solved.  

 

This research project is focussed on developing a moisture design tool - the Performance 

Indicator (PI) tool - using a different approach than that of regular moisture design tools. It 

incorporates theoretical knowledge and real life data into an expert tool.  The target 

audiences are engineers working in the early design stage. The aim is to improve the 

decision support in order to secure moisture safe solutions. 

 

The objectives of this paper are twofold. The first is to develop and analyse one AI-method to 

predict the performance of one building element of a single-family house.  The second is to 

evaluate the approach of using real life data.   

                                                 
*
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METHOD 

There are a range of AI-tools available. In a previous paper (Yverås, 2005) two main 

categories were investigated: Case Base Reasoning and  Artificial Neural Networks, where 

the Artificial Neural Network (ANN) approach was found to be best suitable for this problem. 

By using ANN it is not necessary to know or understand the causalities between different 

parameters affect the final performance of the design. The method has been tested in 

several instances: to predict construction cost (Kim et al, 2004), to estimate energy 

performance (Issa et al, 1998), for indoor temperature prediction (Thomas and Soleimani-

Mohseni, 2007), to predict the prevalence of building-related symptoms (Sofuoglu, 2007), 

and a number of other prediction challenges.  A more closely related subject where ANN has 

been applied is service life assessment on timber as a building material based on real life 

data (Yatim et al, 2005). However, this particular study did not manage to present an ANN 

with good prediction ability. This failure is difficult to explain due to lack of information in 

that paper about, for example, the assessment of some of the chosen parameters and the 

ANN-design.  

 

The outdoor ventilated crawl-space was chosen as a test case in this research project, 

because it is a rather usual foundation method in Sweden and also much discussed as it is 

recognized to be associated with moisture problems. Applying ANN requires a large number 

of documented cases and this is a design which is well covered in the literature and also well 

represented in the archives of moisture damage consultants due to its extensive history of 

moisture problems.  Another important consideration is that the design in most cases is easy 

to inspect in order to determine its condition.  

THE TEST DESIGN AND DATA SOURCES 

There are mainly four different crawl-space designs that can be found in Sweden: plinth 

foundation, outdoor ventilated crawl-space, indoor ventilated crawl-space and unventilated 

crawl-space (Burke, 2007). To simplify, this study focusses on the outdoor ventilated crawl-

space (Figure 1) in order to limit the number of parameters. It is a foundation method where 

the ground floor (1) is separated from the ground by an unheated space which is outdoor 

ventilated (3). The ground is covered by a vapour barrier to keep the ground moisture from 

evaporating into the crawl-space (6). 

 
 

Figure 1.   An outdoor ventilated crawl-space 
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The key to understanding the performance of this particular design lies in the seasonal 

changes in northern countries.  During winter the crawl-space is cooled down and, during 

the summer, the surface temperature in the crawl-space is lower than the outdoor 

temperature due to the large heat capacity of the crawl-space. As a result the relative 

humidity in the crawl-space easily exceeds the risk level of relative humidity (80%) for 

microbiological growth.  In the northern parts of Sweden the risk is higher albeit lasting for a 

shorter period of time than in the south of the country where the risk season is longer 

(Svensson, 1999).  

 

All parameters that are likely to have an influence on the performance of the design must 

therefore be captured in the real life data sources. Two data sources have been used, that of 

the SSN (Småhusskadenämnden: National aid organisation for moisture damaged single 

family houses) and of Anticimex. The reason for having two data sources is because they can 

be used to correct each other’s deficiencies. The SSN archive provides more fully 

documented cases, although most of them are “bad” cases where the crawl-space is in a 

poor condition. The good cases are those where the crawl-space is healthy and unaffected 

by any mould problems. It is important to find both good and bad cases, or rather crawl-

spaces which show a range of conditions to minimize the risk of minority cases being 

disregarded in the ANN-training. In the Anticimex archive there is a larger amount of good 

cases to be found which is why this data is included. 

NEURAL NETWORKS 

The notion of AI first appeared in 1943 in the work done by Warren McCulloch and Walter 

Pitts, and in 1951 the first neural network computer was built by two graduate students 

(Russel & Norvig, 2003). Since then the area of AI and ANN has been developed and is today 

a popular technique with practical application in many fields: medicine, law, economics etc.  

The basic idea of ANN is to imitate the learning structure and process of the human brain. 

ANN provides the ability of learning from examples in order to make predictions without 

having to know the underlying relationships.  

 

Briefly simplified, a neural network consists of a number of interconnected neurons between 

an input and an output layer, where weights are attached to each connection, Figure 2. 

Between the input and the output layer there can be one or more hidden. The process of 

neural network learning starts by introducing pairs of input and output data from real life 

data. The input data of each case is processed through the net and its hidden layers 

producing an output data. This is then compared with the target data (true data) of the 

introduced input data. After each session the error is calculated whereupon the weights in 

the net are adjusted. This procedure is repeated several times for the whole training data set 

until the error has reached an acceptable and predetermined level. By now, a memory 

structure that can recognise and predict cases has been accomplished. Not only that, it is 

also able to predict cases outside the training data due to the generalisation ability of the 

net. More about ANN can be found in Fausette (1994), Skapura (1995), Callan (1999), Gurney 

(1997) and Haykin (1999). 
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Figure 2.   A Neural Network model 
 

There are, however, some issues that need to be addressed when applying ANN.  First of all, 

secondary data sources seldom provide complete data. If it is not possible to reject cases 

with missing data, a replacement strategy needs to be adopted. Furthermore, each 

parameter needs to be normalised, for instance in the range of 0-1, in order to prevent some 

parameters outperforming others in the training. Finally, it is not recommended to train the 

ANN too many times as this would result in over training, with the ANN adapting too much 

on the training data, which would have a  negative effect on its generalisation ability.   

APPLIED ARTIFICIAL NEURAL NETWORKS 

In this research project a feed-forward neural network model is applied. The Neural Network 

Toolbox of Matlab 7.0 (Demuth & Beake, 2000) has been used where a back-propagation 

(Levenberg-Marquardt algorithm) with log-sigmoid transfer function in the nodes is applied 

to predict the performance of outdoor ventilated crawl-spaces. In order to prevent 

overtraining, the training of the net has been stopped through cross validation.  As the 

network weights are initialised randomly the results from any two training trials will differ. 

Therefore, the best result out of 20 trials is presented in this paper. The prediction 

performance measure is calculated through the mean absolute error, MAE 

. 

n

aluepredictedveactualvalu
MAE

n

i∑ =

−

=
1        (1) 

  

In order to create a memory structure of ANN to predict the performance examples are 

needed. The training of the ANN has been based on secondary real life data found in the two 

different archives described earlier: SNN and Anticimex. The retrieved training data contain 

variables that are believed to affect the condition and in turn the performance of the 

outdoor ventilated crawl-space. These variables represent the input data. The output of the 

training data describes the condition of the outdoor ventilated crawl-space design. 

 

Approximately 1500 reports were searched. The data retrieval process was carried out as 

follows: 

1. Decide on which features are representative service life parameters – both input and 

output 

2. Create and structure a preliminary recording unit (template) 
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3. Preview of archives – which features can be found, in what format and to what 

extent 

4. Evaluate the results and if necessary readjust the recording unit 

5. Collect the required amount of data sets from the archives 

6. Data inspection 

The data retrieval comprises outdoor ventilated crawl-spaces built in Sweden and involves 

only single-family houses. The study is  focussed on parameters that are moisture related.   

 

In order to avoid unnecessary data noise, some cases need to be rejected from the data 

collection. Seasonal houses such as winter cabins or summerhouses are not included as they 

might have a different service life than permanently lived-in houses. Rejected are also those 

that have been subject to water damage such as leaking water pipes or flooding. 

Furthermore, if the design of the crawl-space has been altered during its life time the case 

should not be used as any change might have an impact of the service life. 

TEST CASES 

Separate ANN have been trained on each performance indicator for two reasons. The first is 

to minimise the network size and the second to make it possible to discover if there are any 

separate training difficulties for the indicators. The network architecture has been tried 

using both one and two hidden layers with the following number of hidden units in each 

layer: 

• First hidden layer: 2, 5, 10, 17, 22, 45 units 

• Second hidden layer: 2, 5, 10, 17, 22, 45 units 

Output training data    

The output data describe the condition of the outdoor ventilated crawl-space and are the 

performance indicators of the design. In the archives the condition is reported using the 

presence of microbiological smell, visible mould, and rot or rust if there is a floor structure 

made of concrete. From time to time microbiological activities were measured and lab 

results presented in the reports. This information, however, has not been used as a 

condition indicator, firstly because a sampling of two or three spots is unlikely to be 

representative, and, secondly, because such reports are rare in any case.  The output data 

has therefore been selected and categorised according to Table 1.  

 

As noted each output is differently classified, using 2 to 4 classes. This is an adaption to what 

has been found in the archives and to how the condition of the crawl-spaces has been 

described. The output data of smell has binary representation whereas the categories of 

mould and rot/rust and their internal classification have been assigned a value in the span of 

0 – 1 according to Equation 2.  

 

Y
m

n
=

− 5.0
   (2) 

 

m: number of classes in the category 

 n: classification 1,2,3…m  
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The performance indicators are not flawless. Microbiological smell may not be present 

during the cold season even if there is mould present. Most microorganisms (bacteria and 

fungi) found in buildings can not grow in temperatures below 0°C (Flannagan et al., 2001). 

Such cases, with heavy mould growth but no smell detected, were found during the data 

inspection. A majority of these cases were reported during the winter season.  Additionally, 

these cases were very few which made them even less dependable and hence they were 

rejected from the training data. Furthermore, in some instances the mould can be difficult to 

detect due to the colour of the building material it is growing on.  Black spots on a light-

coloured counter floor is easy to observe by the human eye but difficult if the counter floor 

is black. This can result in faulty data that might obstruct an effective ANN-training. 

Input training data    

The input data are summarised and displayed in Table 2 showing the parameters that in the 

literature are believed to have an effect on the condition of the outdoor ventilated crawl-

space (Nevander & Elmarsson, 1994; Kurnitski, 2000a and 2000b; Svensson 1999a, b; Yverås, 

2002).   
Table 1. Output representation 

Output data Definition 

Y1      Smell 

Y2      Ocular detected mould 

 

Y3      Ocular detected rot 

0 = No smell, 1 = microbiological smell  

0.125 = Nothing visual, 0.375 = Local spots, 0.625 = Light growth in major 

part of  crawl-space, 0.875 = Extensive / rich growth 

0.167 = Nothing visual, 0.5 = On surface, 0.833 = In depth 

 
Table 2. Input data (X1-X22) list  

 Parameter Definition 

A 

X1    Capillary breaking layer 

X2    Drainage system – roof 

X3    Drainage system – ground 

X4    Surrounding ground inclination 

1 = yes, 0 = no  

1 = yes, 0 = no  

1 = yes, 0 = no  

1 = yes, 0 = no 

B 

X5    Insulation - counter floor 

X6    Level of insulation in floor structure 

X7    Insulation – foundation wall 

1 = yes, 0 = no  

 [mm] 

1 = yes, 0 = no 

C 
X8   Ventilation – mechanical 

X9   Vapour barrier 

1 = yes, 0 = no 

1 = yes, 0 = no 

D 

X10   Load carrying structure: inorganic 

X11   Counter floor: inorganic 

X12  Foundation wall: inorganic 

X13   Impregnation of wood material 

1 = yes, 0 = no 

1 = yes, 0 = no 

1 = yes, 0 = no 

1 = yes, 0 = no 

E 
X14   Floor heating 

X15  Organic waste     

1 = yes, 0 = no 

1 = no,  0 = yes 

F 

X16   Relative humidity 

X17   Precipitation 

X18   Mean annual temperature 

X19   Reference wind velocity 

X20   Surrounding terrain           

X21   Ground material*                

[%] 

[mm] 

[C°] 

[m/s] 

1 = Outside urban areas , 0 = Urban 

Rock, clay = 0 / Moraine, Silt = 0.5 / Gravel, Sand = 1 

G X22   Age at inspection Age at inspection – year of construction 

* Describes the permeability of the ground  
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The parameters have been divided into groups where A, B and C represents technical 

solutions that are considered to meet performance requirements. The solutions of group A 

prevent precipitated water from reaching the crawl-space, while group B represents 

solutions preventing warm, humid air from condensing in the crawl-space. Group C deals 

with solutions that prevent ground vapour from reaching the crawl-space and evacuation of 

humid air in the crawl-space. Ground evaporation and initial construction damp cause an 

increase of vapour in the crawl-space air. The parameters in group D describe the 

composition of materials which is of importance for their durability. Wood, for instance, is 

more sensitive to moisture exposure than concrete in this context. Group E consists of 

parameters which were not intended to influence the performance of the crawl-space, but 

whose side-effect may nevertheless do so.  Floor heating is such an example in that may 

provide heat to the crawl-space, decreasing the risk of condensation (Svensson, 1999a). 

However, it is uncertain to what degree a floor heating system can affect the design as it is 

highly dependent on the insulation degree in the floor structure. The organic waste (x15) is 

not a design parameter but it is present in many of the retrieved cases and is very likely to 

influence the performance indicator of smell. It is therefore included to decrease the risk of 

complications in the ANN training. 

 

The local conditions (F) arising from climate and topography is another group of parameters 

influencing the condition of the crawl-space. From the geographical locations given in each 

case, it was possible to identify the nearest weather station of SMHI (national weather data 

authority in Sweden) and thereby obtain data of relative humidity, precipitation, wind and 

temperature. The annual mean value of relative humidity is based on daily mean values 

calculated from observations at 00, 06, 12 and 18 hrs. The annual mean temperature can be 

based on hourly observations or less, depending on the type and age of the nearest weather 

station. The annual wind velocity mean value is calculated from 10 minute observations 

made every third hour. All in all this data are far from consistent as the observation 

frequency varies between stations and when the observations were made. Some weather 

stations have a long record of observations whereas others only can present data from a few 

years. However, as this project has a rough estimation perspective these data are regarded 

to have some value in indicating the climate of each case.   

 

There is one important parameter missing which is the one describing the ventilation 

capacity in the crawl-space. When retrieving the training data the intention was to collect 

information about the area of the ventilation gaps in relation to the volume of the crawl-

space. This intention had to be abandoned as this information was largely missing in the 

cases.  However, this parameter is not the only one to influence the air exchange in the 

crawl-space – wind speed and local topography are others which in this case are included as 

input data.  

 

Those parameters that have a yes/no-answer have binary definition. The remaining training 

data set is linearly scaled in order to avoid parameters with large values overriding 

parameters with smaller values. The linear scaling has a range of 0-1. Following parameters 

were scaled by Equation 3: 

 

• Insulation with range 20-250mm 

• Relative humidity: 70-87 % 
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• Precipitation: 284-1001 mm 

• Mean annual temperature: -1.0 – 9.3 ºC 

• Reference wind velocity: 1.1-8.1 m/s 

• Age at inspection: 5-96 years 

 
 

X
II

II
=

−

−

)(

)(

minmax

min                            (3) 

 

X is the normalised value of the input I, Imin and Imax are the minimum  

and maximum values of the parameter range. 

Missing data    

As this research project does not have access to data primarily designed for this purpose, 

and the use of secondary data is usually difficult because of missing data, great effort has 

been directed at the handling of missing data. For seven of the parameters the level of 

missing data varies between 21 and 63%.  It is important to describe this process as it can 

have great influence on the results.  A poor strategy to handle the missing data will be 

reflected in the neural network training. More on how this was handled can be found in 

Yverås (2008). 

 

Results from the validation 

The trained network was cross validated against 38 cases which had not been used to train 

the network. These cases have various designs, geographical locations and local conditions 

within an age span of 3-46 years. Besides the base case design described in Figure 1 there 

are also cases that are deviating from the basic design as follows:  

 

• No vapour barrier 

• Floor heating 

• Increased/decreased insulation in the floor structure 

• Insulation of counter floor 

• Insulation foundation walls 

• Mechanical ventilation 

• Concrete structure 

• Organic foundation walls 

• Impregnation of wood material 

 

Another important characteristic of the selected validation cases is that they show a 

validation data set with representation in all the found condition combinations of the output 

data, see Table 3, which also shows that the distribution of chosen validation data is 

approximately 10% of the total amount of retrieved data.  

 

In all, 27 different neural network designs where tried. Table 4 shows the result of three 

different designs of the best performing networks for each performance indicator. The 

prediction performance varies with smell being easiest to predict. It should be remembered, 



III-9 
 

however, that smell has only two classes (smell/no smell) to consider whereas mould has 

four and rot/rust has three. It is very likely that the prediction results would improve for 

mould and rot/rust if the number of classes were reduced.  

However, this might not be the only reason why the mould indicator does not perform as 

well as the others. All three indicators are based on how the condition of each crawl-space 

was perceived by the consultant who assessed the case. It is of course likely that the 

consultants have different frame of reference of how to assess the degree of mould. What is 

light mould growth for one consultant might be rich mould growth for another. Another 

issue that might make it difficult for the network to predict mould is the cases where there is 

mould but which has not been observed by the consultant. It can, for instance, be difficult to 

detect dark mould spots on a dark counter floor, which in turn can impair the neural 

network training.  

 

 

Table 3. Output representation of training and validation data  
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1 ●  ●    ●   73 67 6 

2 ●   ●   ●   34 30 4 

3  ● ●    ●   54 51 3 

4  ●  ●   ●   32 26 6 

5 ●    ●  ●   31 28 3 

6  ●   ●  ●   58 55 3 

7  ●    ● ●   28 27 1 

8 ●  ●     ●  2 1 1 

9*  ● ●     ●  2 2 0 

10  ●  ●    ●  3 2 1 

11  ●   ●   ●  6 5 1 

12  ●    ●  ●  5 4 1 

13  ●  ●     ● 6 5 1 

14  ●   ●    ● 19 16 3 

15  ●    ●   ● 38 34 4 

*These two cases were initially categorised into category 8 by mistake. It was discovered when the results were compiled 

which is why no validation has been done. 
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Table 4. Prediction results from the best performing network with 
cross validation 

Performance 

Indicators 
MAE (training) MAE (test) Corrrect classification [%] ANN Design 

Smell 

Mould 

Rot/Rust 

0.0409 

0.1588 

0.0608 

0.0324 

0.1187 

0.0839 

100 (38/38) 

76.3 (29/38) 

92.1 (35/38) 

17 + 17 

5 + 10 

2 + 17 

 

CONCLUSION AND DISCUSSION 

The performance prediction method presented in this paper indicates a potential for further 

development. It is an interesting approach where the results demonstrate how to capture 

both theoretical knowledge and real life experience into a common system. Complex and 

unknown causalities can be evaded with ANN and yet provide performance predictions, 

which is the main problem when developing traditional moisture design tools.  

 

The method can be useful in the early stages of design when the accumulated project 

information still is small and the detail level is rough. Different design options can be 

assessed and compared. Previous experience can be captured in the structured and 

systematic manner displayed in Figure 3. The method also allows the knowledge to be 

distributed easily. Another benefit is that both the input and output data is straightforward 

and easy to grasp. The decision maker can easily learn the true outcome of a certain design 

from experience and how it evolves over time. To compare alternative designs by humidity 

and temperatures alone, which is offered by traditional tools, is more difficult and requires 

more knowledge to be handled.   

 

 
Figure 3.   Performance prediction by artificial neural networks. 

 
The positive validation results must still be carefully handled. It should be noted that the 

validation data set is originating from the same sources as the training data. This means that 

they lie within the limits of the source of which the neural network has created a memory 

Artificial neural 
network 
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structure. The ability to predict the condition of crawl-spaces with parameter combinations 

that does not exist in the training data needs to be further evaluated.  

 

However, when a tool like this should ever be developed for practical use, it should not be 

based on secondary data from Anticimex and SSN due to the large amount of missing data 

and dearth of performance indicators. Even though good prediction results were attained, 

this type of training data should be avoided. If a parameter with a high level of missing 

values has a significantly stronger influence than other parameters on the performance, it 

will be impossible to obtain a good prediction level. Furthermore, the performance 

indicators (output data) need special attention as they are based on individual observations 

that might have different frames of reference. In a primary data source this can be better 

controlled. The real challenge is to find real life data in sufficient amount and quality with 

representative performance indicators. Training an ANN is the easy part.  

 

Acquiring a large amount of primary data for neural network training in this context requires 

extensive resources. The more input parameters a design needs to be described, the more 

training data is required. The PI-tool has, however, a potential to be helpful in the decision 

process during the early stages of design. Another paper, not yet published, compares the 

prediction ability of the PI-tool with humans where the PI-tool outperforms human experts. 

Considering the costs due to moisture damage every year, the use of this tool should fairly 

quickly pay off for the building industry and society. In all, this paper demonstrates an 

approach worth further investigation in order to develop the reliability of this tool in itself, 

and also its application on other building elements (roofs and facades).  
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ABSTRACT 
Purpose – Based on artificial intelligence, a performance indicator tool (the PI-tool), has 

been developed to predict moisture-related conditions of building elements. The objective 

of this paper is to test the competitiveness of the PI-tool against professionals – in other 

words can artificial intelligence provide better performance predictions than professionals? 

The paper also explores how much experience and education influenced the prediction 

results. Last but not least – would professionals be interest in using this tool? 

 

Design/methodology/approach – A performance prediction comparison has been 

performed on line where respondents were asked to predict the condition of five different 

outdoor ventilated crawl spaces. The same cases were then submitted to PI-tool prediction.   

 

Findings – The PI-tool predictions were 93% correct whereas the test persons achieved an 

average of 50% correct predictions. No correlation between the test persons’ results and 

their professional or educational background were found. Finally, the PI-tool was the most 

requested of suggested decision support tools.  

 

Originality/value – A tool like this can be very helpful in the early design stage in order to 

ensure moisture safety and thereby prevent future moisture problems. As the PI-tool is 

better at predicting the performance than professionals, it is worth developing this PI-tool. 

INTRODUCTION 
It is indisputable that it is necessary to allocate recourses in the design stage to create 

moisture safe solutions. If disregarded, the consequences can become expensive both from 

an economical and a health point of view. There are different options available to handle 

moisture safety during design one of which is known as well-tried solutions (Sandin, 1988). 

To ensure moisture safe solutions well-tried solutions require documented experience of 

real life cases. When applying a design used in a previous project the surrounding conditions 

must agree with the previous project. Burke and Yverås (2004) suggested that engineering 

consultants relied on this experience to solve moisture design problems. However, their 

design decisions were rarely, if ever, followed up. Generally, decisions are reused in similar 

projects even though their outcome is often unknown.  

                                                 
*
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The performance indicator tool (PI-tool) can in this instance become helpful as it is able to 

learn through real life experience and thereby captures the real outcome of design 

decisions. Basically it is a system for experience which would allow experienced knowledge 

to be easily extracted to be used in the design process. In this research project, a new 

moisture design tool has been developed to make performance predictions regarding the 

condition of a building element. It is based on Artificial Neural Networks (ANN) within the 

area of Artificial Intelligence (AI) and thereby explores a different approach in comparison 

with regular moisture design tools. Real life experience of more than 350 cases of the 

outdoor ventilated crawl-space design has been captured in this tool.  A prediction by the PI-

tool describes the future condition through prevalence of microbiological smell, mould and 

rot/rust. The tool is aimed to be used as a decision support during the early design stage 

where the information level is low and rough. 

 

Developing a tool like this further would require a great deal of effort and recourses. A 

justified question is therefore if prospective users such as engineering consultants, moisture 

experts and moisture damage consultants would take interest in such a tool.  

 

The objectives of this paper is to compare the performance prediction ability of the tool that 

of   professionals and to measure if experience and education have significance on their 

results for this particular prediction task. Furthermore, is this kind of system capturing 

experience desired by the professionals?     

THE PERFORMANCE INDICATOR TOOL 
The tool is based on Artificial Neural Network (ANN) which is a method to extract knowledge 

by learning from real life data. The basic idea of ANN is to imitate the learning process of the 

human brain. By presenting cases with known outcomes to the computer program, a 

memory structure is created where the internal weights in the net are adjusted during the 

training process. When the training is completed the memory structure has the ability to 

make predictions in cases not trained on.   

 

The main benefit of applying this technique is the possibility of making predictions without 

having knowledge of the underlying causalities of a certain problem. Unknown causalities 

regarding performance predictions of building elements are not yet fully solved regarding 

the biological, chemical and physical relationships. When developing traditional moisture 

design tools, these relationships need to be known in order to describe the degradation. By 

the application of ANN the causality problem can be evaded. More on ANN can be found in 

Fausette (1994), Skapura (1995), Callan (1999), Gurney (1997) and Haykin (1999). 

 

This performance prediction method based on ANN has in this research project only been 

applied on the performance prediction of outdoor ventilated crawl-spaces, Figure 1. In all, 22 
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parameters have been used to describe the design, which are regarded as influential on the 

moisture safety performance have been used to describe the design. The vapour barrier on 

the ground is one of the chosen parameters. If it were missing, the relative humidity, and 

subsequently the risk of mould growth, would increase.  

 

The training data have been retrieved from inspection reports of outdoor ventilated crawl-

spaces describing the design and current condition. The performance indicators reflect the 

condition through the presence of smell, mould and rot. Table 1 shows how the indicators 

are described at different levels. In the training of the ANN each case is presented for the 

ANN by the parameters describing the crawl-space case with the documented outcome in 

the inspection reports. The validation results of the PI-tool indicated fairly good prediction 

ability, as it correctly predicted smell, mould and rot by 100%, 76%, and 92% (Yverås, 2010).  

 

   

 

 

Figure 1.   A basic outdoor ventilated crawl-space design. 
 

Table 1. Performance indicators of the outdoor ventilated crawl-space 

Performance Indicators Level of condition 

Microbiological smell 

 

Ocular detectable mould 

 

 

 

Ocular detectable rot 

 

1. No smell 

2. Microbiological smell  

1. Nothing visual  

2. Local spots 

3. Light growth in major part of crawl-space 

4. Extensive / rich growth 

1. Nothing visual 

2. On surface 

3. In depth 

5 

7 6 

1. Floor structure 

2. Counter floor 

3. Ventilation valve 

4. Foundation wall   

5.  Ground surface 

6. Vapour barrier 

7. Capillary breaking and draining material layer 

8. Drainage pipe   

4 

1 

2 

8 

3 
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METHOD 
It was desired in the study to reach a large amount of possible respondents which is why the 

prediction test is set up as a web based questionnaire. The study was conducted through the 

questionnaire tool Dialog manager 3.0 which provides the possibility to cross-analyse the 

results.  

 

To cover different types of experience the sampling frame encompasses respondents that 

belong to one of the following professions: engineering consultant, moisture damage 

consultant and moisture experts. These are considered to be dealing with moisture safety 

issues. 110 e-mails where sent out eliciting participation in this survey where additionally 

two reminders where sent out. The survey was limited to Sweden. 

 

The main focus of the questionnaire is the performance prediction test where the 

respondents were asked to predict the performance of five real life cases of outdoor 

ventilated crawl-space designs.  All of the cases have a different geographical location in 

Sweden, and their age (15-31 years old) and condition vary. The five cases are summarised in 

Table 2. In all, the respondents have to consider a large range of parameters, including the 

geographical location, in each case. The information for each case is given without 

dimensions except for the age. Instead each parameter is given as present or absent. The PI-

tool and the respondents are given the same information 

 

Tabel 2 Composition of test cases 

Case: 1 2 3 4 5 

Capillary breaking layer 

Drainage system – roof 

Drainage system – ground 

Surrounding ground inclination 

Insulation - counter floor 

Insulation - foundation wall 

Mechanical ventilation 

Vapour barrier 

Counter floor – inorganic 

Foundation wall – inorganic 

Floor heating 

Outside urban areas 

Ground permeability – high 

Age [years] 

X 

X 

X 

 

X 

 

 

X 

X 

X 

 

 

 

31 

 

 

X 

X 

 

 

 

X 

 

 

X 

 

 

 

20 

X 

X 

X 

 

 

X 

 

 

 

X 

 

X 

 

17 

X 

 

X 

 

 

 

 

X 

 

X 

X 

X 

 

15 

 

X 

 

 

 

 

 

X 

 

 

 

 

X 

18 

 
The respondents had to make three predictions for each of the five cases, 15 predictions in 

all. This task requires a rather large effort of the respondents. The risk of having too many 

cases is that it could either result in fewer responses or a concentration drop during the 

survey. The respondents were not informed about the PI-tool and thereby unaware of the 

performance prediction challenge.    
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Respondents were also asked to give background information concerning current profession 

and years of experience as engineering consultant, moisture damage consultant or moisture 

expert. Furthermore, they also had to state their educational background which also 

includes specific moisture safety related education.  

 

As it was not certain how the respondents would go about solving the prediction test they 

were requested to describe, in their own words, how they solved the prediction task.  

 

The test does not aim to describe the knowledge level of building physics of the 

respondents. Most professionals would know by experience that outdoor ventilated crawl-

spaces are likely to develop mould problems. Probably, most of them would strongly advise 

against using the design at all. Therefore the results of this paper regarding the prediction 

ability of the respondents (professionals) only apply to this kind of prediction problem.  

 

Finally, the respondents were asked if they would request a system to capture experience 

such as the PI-tool? The question was included with several other options that are able to 

offer some kind of decision support during moisture safety design. In the questionnaire the 

respondents were asked to state if these needed to be improved/developed.  

RESULTS 
Background of respondents 
The questionnaire was sent out to 110 people where 55 answered which resulted in a 

response level of 50% and with the following distribution by profession : 

 

• Engineering consultant (A)  40% (22) 

• Moisture damage consultant (B) 29% (16) 

• Moister experts (C)  31% (17) 

The educational background varied between the different professional groups, Table 3. The 

respondents predominantly had a Master of Science degree (Civil engineer). The second 

largest group is those with a high school engineering degree. Only 7% (4) have a research 

background, with either a Licentiate of engineering or a PhD. The remaining respondents are 

not considered to have a traditional theoretical education regarding building technology. 

Table 3  Educational background of the respondents 

Education: A[%] B[%]  C[%]  All[%]  

High school engineer 

Bachelor of science 

Civil engineer 

Licentiate of engineering / PhD 

Other 

13.5 

13.5 

73.0 

0 

0 

43.7 

25.0 

12.5 

6.3 

12.5 

23.6 

11.8 

29.4 

17.6 

17.6 

25.4 

16.4 

41.8 

7.3 

9.1 

 



IV-6 
 

The professional background of the respondents was more varied than expected, which of 

course makes it more difficult to make straightforward conclusions regarding the correlation 

between profession and prediction ability. For instance, almost 60% of the engineering 

consultants have had working experience with moisture damage investigations, Table 4.  

 

Table 4  Experience with moisture damage investigations 

Years of experience: A[%] B[%]  C[%]  All[%]  

0 

1-5 

6-10 

11-15 

16-20 

>20 

40.9 

27.4 

13.6 

4.5 

4.5 

9.1 

6.2 

18.8 

37.5 

6.2 

12.5 

18.8 

0 

23.6 

29.4 

0 

29.4 

17.6 

18.2 

23.6 

25.4 

3.6 

14.6 

14.6 

 
The PI-tool challenge 
Of 15 predictions the PI-tool managed to predict 14 correctly (93%). The incorrect answer 

concerned a rot prediction in case 2 where the PI-tool predicted “nothing visual” when the 

correct answer (real life outcome) should have been “on surface”. The respondents did not 

succeed as well as the PI-tool as their average was only 7.5 correct predictions (50%). In 

Figure 2 the distribution of correct predictions is displayed which range from 3 to 12 correct 

predictions. The best three results are provided by two moisture damage consultants and 

one moisture expert (11 and 12 correct predictions). The lowest results of only 3 and 4 

correct predictions are represented by one moisture expert (4 correct predictions) and three 

engineering consultants. 

 
Figure 2. Distribution of correct predictions. 

In all, the respondents tended to overestimate the degradation rate of the crawl-space 

cases. Of the incorrect predictions, 30% overestimated whereas 20% underestimated the 
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degradation rate. The case 1 is healthy at age 31 years but half of the respondent group 

predicted it to have mould problems. In case 4, which is also a healthy case, even fewer 

believed the case to be free from any mould problems, Table 5. 

 
 Correctly assessed [%] 

Case: Smell Mould Rot All 

1 

2 

3 

4 

5 

58 

85 

15 

35 

84 

49 

55 

49 

22 

11 

92 

45 

62 

76 

13 

66 

62 

42 

44 

36 

Tabel 5.  Respondents’ prediction results for each case 

The prediction results of the questionnaire were cross analysed by profession, educational 

background, and years of experience regarding moisture damage inspection, see Table 6, 7, 

8, and 9. It is difficult to draw distinct  conclusions as neither years of experience concerning 

moisture damage inspections nor formal education could be related to the prediction ability 

of the respondents. Table 6 indicates slightly better prediction ability for those who consider 

themselves to be moisture experts but the difference between the professionals is not that 

large. The same goes for those who have additional moisture education, Table 9. In Sweden 

there are two well established educations which are known as: Moisture Adviser or House 

Doctor.  The test results of those who had this additional education were compared with the 

results of those who did not have it, regardless of former education or experience. Having 

this additional education improves the prediction ability slightly. 

Table 6 Results of condition assessment by respondents categorised by profession 

 Correctly assessed [%] 

Respondents: Smell Mould Rot All 

All (55) 

Engineering consultants (22) 

Moisture damage consultant (16) 

Moisture expert (17) 

55  

49  

54 

65 

37  

37 

35 

38 

58  

51 

63 

62 

50 

46 

51 

55 

 

Table 7  Correlation of correct prediction and years of experience with moisture damage 
inspections 

Years of 

experience 
Smell [%] Mould [%] Rot [%] All [%] 

0 (10) 

1-10 (27) 

11-20 (10) 

>20 (8) 

50 

58 

60 

48 

36 

41 

36 

28 

54 

61 

56 

55 

47 

53 

51 

44 
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Table 8 Correlation between correct prediction and education 

Education Smell [%] Mould [%] Rot [%] All [%] 

High school engineer (14) 

Bachelor of Science (9) 

Master of Science (23) 

Licentiate of engineering / PhD (4) 

Other (5) 

57 

64 

50 

40 

68 

41 

44 

35 

30 

28 

59 

67 

54 

50 

64 

52 

58 

46 

40 

53 

 

Table 9  Correlation of correct prediction and additional moisture education 

Additional moisture 

education  
Smell [%] Mould [%] Rot [%] All [%] 

No (26) 

Yes (29) 

50 

60 

32 

41 

51 

63 

44 

55 

  
The respondents were also requested to rate how difficult they found the prediction test to 

be. The majority thought it was rather difficult but 16% (9) found the prediction task easy to 

solve. However, they did not provide better prediction results than the average result of all 

respondents. Among them were two moisture experts, six moisture damage consultants, 

and one engineering consultant who had 10-15 years of experience of moisture damage 

inspections. 

 
Means to solve the performance prediction 
The respondents could use any available means to solve the prediction test e.g. moisture 

calculation tools, literature or colleagues. They were therefore asked to include information 

concerning how they solved the prediction task. Only one respondent stated that he/she had 

used a moisture calculation tool (Crawl 2.0) to calculate moisture and temperature levels in 

the crawl-space. By using this tool the respondent, a moisture expert, achieved a prediction 

result of 67% (10/15) correct predictions which was above average. Below are some of the 

respondents’ comments on how they solved the prediction test: 

   

• Experience and theoretical knowledge 

• Guess 

• Lack of time to solve the predictions 

• Intuition – no calculation due to lack of time 

• Given information incomplete 

• 100 crawl space inspections 

• Knowledge and experience 

• Rules of thumb 

• Theoretical knowledge 

• 20 years of experience 

Of the 55 respondents, 27 explicitly stated that they used their experience to solve the 

performance prediction task. Theoretical knowledge was also mentioned also in 
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combination with experience and in only a few cases was literature referred to as a 

prediction base.  Lack of time to solve the prediction task was mentioned by six of the 

respondents as an explanation as to why they did not exert themselves to perform the 

predictions.  Some of them also thought the provided information in each case description 

too scant.   

 

Is the PI-tool requested? 
The question was posed in a more general manner in order to relate to other possible 

options of requested tools. The aim of this question is to find out if there is a need for a tool 

like the PI-tool without being too explicit as the respondents are not informed about the PI-

tool. In the questionnaire this is named as system to capture experience which reflects the 

core of the PI-tool. As mentioned earlier the PI-tool aims to capture real life experience and 

transform this knowledge into accessible information during the design stage as 

performance predictions. According to the results in Table 10, system to capture experience 

is the most requested alternative by the respondents (93%) followed by moisture calculation 

programs (87%). The less popular alternative in all were the improvement/development of 

handbooks with 76% which still is a significant number. 

Table 10  Areas of improvement/development 

Moisture design decision 

support 
A [%] B [%] C [%] All [%] 

Handbooks 

System to capture experience 

Product information 

Moisture calculation tools 

Moisture educations 

Guidelines during design 

74 

95 

91 

91 

91 

91 

80 

81 

75 

80 

53 

60 

75 

100 

88 

87 

97 

81 

76 

93 

86 

87 

81 

80 

DISCUSSION 
What this prediction test indicates is that real life experience is difficult to handle without 

computational aid, even for the most experienced. In the results there were no major 

indications that could verify a correlation between prediction ability and education, 

experience or present profession. Education and experience did not according to the results 

give any correlation at all. When cross-analysing the results of prediction ability and 

experience of moisture damage inspections, it did not provide any clear indication that 

experience was reliable in the prediction task. Instead it might have to do more with the 

human capacity to handle a range of variables. According to Halford et al. (2005) it is 

impossible for the human brain to process information with more than four variables. As the 

number of parameters exceeds four this may partly explain the results. The background of 

the respondents could therefore have been ruled out as having any impact on their 

prediction ability. However, the study of Halford et al. (2005) is based on test persons 

learning a new problem, in contrast to the respondents in this survey who have knowledge 

and experience over a longer period of time. This might increase the number of variables 
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that they are able to handle but not enough to handle the number presented in the 

prediction task. 

 

The small correlation indicated regarding prediction ability and profession could have been 

more significant but may have been distorted by the fact that the experience base of the 

respondents was rather wide. For instance, 61% (14) of the consultant engineers have had 

experience of moisture damage consulting. It may, however, not be the sole explanation. 

Interestingly, a small indication on the correlation between prediction results and additional 

moisture education was noticed in this survey. Those with additional education performed 

somewhat better than those without one. However, the difference is too small to draw any 

conclusions on without further investigation. 

 

One of the concerns when designing the study was the number of cases in the prediction 

test. Having too many cases could repel invited participants of the study as each case 

requires some effort. The other implication is that the respondents are not fully committed 

to the performance prediction task. The commitment issue was partly confirmed by the 

respondents when referring to lack of time. But even though there was enough time 

allocated for this prediction task it is also possible that the concentration level drops with 

the last cases. In Table 5 it can be noted that the prediction ability of the respondents was 

almost reduced to half between the first and the last case. When looking at the results, 

Figure 3, for only the first two cases – 17 of the respondents managed to predict as well as 

the PI-tool (100% correct predictions). The average prediction ability of all respondents is 

improved to 64% but still no difference regarding the correlation with education, profession 

or experience of moisture damage inspections. However, the first two cases differ from the 

others which concern their locations. Both of them are situated in large city areas in the 

south of Sweden where most of the respondents are active. Their experience is therefore 

limited to these geographical areas. If the performance of outdoor ventilated crawl-spaces is 

sensitive to the geographical location it can have an impact on the prediction ability of the 

respondents.  
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Figure 3. Distribution of correct predictions for the first two cases. 

It should be noted that the degree of difficulty varies between cases and does not escalate 

after each case, in fact the last one should be the easiest to predict as it is a typical failing 

design according to real life experience found in inspection reports. The design is a 

foundation wall that partly consists of wood boards which keep the surrounding ground 

from caving in to the crawl-space. For the respondents with experience of moisture damage 

inspections it should be common knowledge that these boards rather soon evolve mould 

and rot degradation. This is yet another signal that the respondents did not manage to keep 

the same motivation or concentration to solve the prediction task to the last case.  

 

Very few of the respondents thought the prediction task was easy. Only one respondent 

used a moisture calculation tool on crawl space designs for guidance to estimate the 

moisture condition in the cases. A moisture design calculation tool such as Crawl 2.0 can be 

helpful in describing the moisture and thermal condition over the year in a crawl-space. 

However the given information in the task is rather rough and comparable to the 

characteristics of the information in the early stages of design. This might impair the use of 

moisture design calculation tools as they usually require rather detailed information and the 

respondents would be forced to guess or estimate some of the input data. But even if they 

were able to provide moisture and temperature conditions and thereby predict if it become 

critical it would still be difficult to predict the rate of the degradation process.  

 

It is not possible to draw any conclusions whether or not a tool (Crawl 2.0) like this made any 

difference on the prediction ability. In general, the respondents used their experience to 

solve the prediction task. From the information given of how they solved the predictions, the 

experience was based on real life experience from inspections, literature/theoretical 

knowledge and intuition.  

 

The survey also aimed to find out if the professionals would take interest in the PI-tool. What 

can be noticed in general from the results in Table 10, is a need for improvement and/or 

development of different tools that are related to moisture design issues. It is indicated that 

systems to capture experience is acknowledged as a very important tool. Even though a 

systems for experience is on the top of the wish list it does not follow that the PI-tool would 

be widely applied in the design process if it was developed further and introduced to 

potential users. Being interested in a tool and using it in reality is two different things. 

External motivation, such as the new Swedish building code (Boverket, 2008), requiring 

improved moisture design can be an important factor to encourage the use of moisture 

safety design tools in general.  However, a new tool means extra expense and the client of 

the consultants may not see the benefit of incorporating it as decision support which implies 

cost sensitivity in relation to perceived value for the client. Furthermore, a new tool might 

require new procedures in the design process which demands some level of motivation to 
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succeed. If there already are moisture design tools used in the design process less 

motivation is probably required than if no such tools are involved at all.  

CONCLUSION 
The performance prediction challenge showed that the PI-tool was better at predicting the 

condition of outdoor ventilated crawl spaces than were the respondents: 97% correct 

predictions and 50% respectively. It is important to note that this does not measure the 

respondents’ abilities to handle moisture issues in general. Though the PI-tool was better, it 

is difficult to tell how much better due to the way in which the survey was constructed. The 

number of cases and number of variables probably decreased the respondents’ motivation 

or concentration and are therefore likely to have skewed the results. The study could not 

identify a distinct correlation between the respondents’ prediction ability and education, 

experience of moisture damage inspections or additional moisture education. Trying to 

make conclusions in a design process regarding future performance, without any aid, may 

therefore be difficult to handle even if previous similar projects has been followed up.  

 

In the beginning of this paper one moisture design approach was mentioned – well tried 

solutions. To adopt this approach in the design stage requires documented experience with 

the exact design with the exact same climate. A design in a cold and dry climate is likely to 

perform differently in a different surrounding. Having access to the PI-tool can therefore be 

of assistance in the decision process during early stages of design or when suggesting 

measures in a moisture damage investigation. This kind of tool to support the approach of 

well-tried solutions is not yet available but it seems there is a need for a system to capture 

experience (93%). The PI-tool represents this kind of system that can incorporate real life 

experience into the design stage. However, other influencing factors have to be investigated 

further in order to attain a comprehensive picture of what influences the implementation of 

a new tool.  
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Abstract 

When a performance prediction method for outdoor ventilated crawl-spaces was explored, 

the cross-validation results were rather good. These results were, however, unexpected due 

to the low quality of used training data (secondary). The objective of this paper was, 

therefore, to investigate the trained network further in order to state the level of 

performance reliability. This was done through a parameter study, where the results were 

compared with an expected outcome as the parameters of a basic outdoor ventilated crawl-

space design were changed.  The results showed that the deficiencies in the training data did 

have a large negative effect on the performance ability of the trained ANN, a negative effect 

that was not picked up in the cross-validation. Foremost, it was the skewed distribution of 

cases regarding their level of degradation (mould level), which probably   caused the 

reversed degradation process. Another important defect was the high level of missing values 

for some parameters, which lead to some unreasonable results. However, there were some 

results from the parameter study that did give reasonable predictions.  In all, the application 

should be investigated further, but with a data source designed for this purpose. Besides 

having access to complete data, it would give the possibility to improve the indicators 

describing the performance of the building element such as the crawl-space.  

 

Keywords:  performance reliability, artificial neural network, outdoor ventilated crawl-space, 

performance prediction method 

Introduction 

In the design stage of a building, it is important to create solutions that provide for a long 

service life without mould problems. The presence of such problems results in an unhealthy 

indoor environment for people who live or work in moisture damaged buildings and the 

economic consequences are significant. One approach to create moisture safe solutions 

during the design stage is to use well-tried-solutions (Sandin, 1998). This is a method that has 

been referred to be applied by engineering consultants, according to Burke & Yverås (2003). 

The approach requires that the performance of the previous design cases that are to be used 

again, are followed up and documented. However, the engineering consultants do rarely, if 

ever, have the time to make the follow-ups, nor do they have any system of experience to 
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use. When using this method, the reused and new design must exactly agree and have the 

same surrounding conditions that can influence the performance (climate, ground material, 

topography). A design is likely to behave differently in cold and warm climates, and the 

difference does not need to be that significant to result in a totally separate moisture 

behavior. Even if this is a fairly simple approach to create moisture safe solutions there are 

no tools available in the design process to capture and handle this kind of experience of real 

life design cases.  

 

In this research project the application of an artificial neural network has been tested on this 

problem with the aim to create a performance prediction tool that can provide rough 

estimates regarding the future condition of a design in the early design stage. The study is 

based on secondary real life data of more than 350 outdoor ventilated crawl-space cases 

found in Sweden. The input data are represented by 22 parameters which are believed to 

have an impact on the performance. As output data three different performance indictors 

are used to describe the conditions of the outdoor ventilated crawl-space: smell, level of 

visible mould growth, and level of visible rot/rust. The prediction results of the validation 

turned out well, with a correct prediction level of: 100% smell, 76.3% mould and 92.1% 

rot/rust (Yverås, 2010).  The results do not, however, stand in relation to the quality of the 

retrieved training data. Some parameters have low representation, and are at risk of being 

ignored in the ANN training. Another deficiency concerns the level of missing values that for 

7 parameters is large levels (21-63%). As the training data is secondary, the reliability of the 

retrieved data can be questioned. Furthermore, the validation cases (38) originate from the 

same data sources as the training data and the cases therefore lie within the limits of the 

training data.  

 

In another study not yet published, the competitiveness of the trained ANN was tested 

against professionals who handle moisture safety issues within their line of work. The 

comparison was designed as a performance prediction test of five different real life crawl 

space designs. There was a notable difference in the prediction results where the ANN 

outperformed the professionals.  

 

The objective is, therefore, to analyse the prediction performance of the ANN further as the 

first validation results do not relate to the quality of the retrieved training data. This will be 

done trough studying the behaviour of the trained ANN when exposed to a parameter study 

in order to see if the prediction results are reasonable.  

The performance of outdoor ventilated crawl-spaces 

The outdoor ventilated crawl-space is fairly frequently used in Sweden even though it has a 

history of moisture problems. A study in the archives of SSN (national organization for aid to 

owners of single-family homes) states that this is a design that should be avoided (Björk et 

al, 2001).  Still, this is widely used by several manufacturers of single-family homes as it is 

more cost effective to produce this type of foundation (Burke, 2007).   Of the single-family 
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homes built between 1991 and 2007, 40% rest on the crawl-space design (Anticimex, 2008). 

The costs to rectify mould damages in a crawl-space design are estimated to range between 

15.000-250.000 SEK (Anticimex, 2008).   

 

A basic outdoor ventilated crawl-space design is shown in Figure 1. The floor structure is 

separated from the ground by foundation walls. Usually, the floor structure consists of 

wooden beams, insulation and a counter floor holding up the insulation. Another option for 

the load-bearing structure is to use concrete, but this is nowadays rarely, if ever, used. It was 

found, when retrieving real life training data, that the cases with concrete were built 

between 1958 and 1986 with a concentration in the mid-seventies (Yverås, 2008). The 

foundation walls can also consist of concrete pillars with concrete beams in between. In 

these instances, the surrounding ground needs to be prevented from caving which is why 

boards of wood are placed between the pillars. This is of course not a recommended 

solution as the boards will decay fairly quickly.  

 

 

Figure 1. Basic outdoor ventilated crawl-space design (Yverås,2010) 

The ground beneath the foundation needs a drainage system to lead away precipitated 

water. Having open water in the crawl-space would accelerate the degradation process due 

to a more humid climate. It is also recommended that the surrounding ground slopes away 

from the house to lead rainwater away.  A capillary breaking layer prevents capillary 

transportation of water from the groundwater level. Ground vapour can be prevented by a 

vapour barrier on the ground. If excluded, the type of ground material can influence 

moisture conditions in the crawl-space due to evaporation. Clay is almost as bad as an open 
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water surface, with a moisture evaporation rate 25 times higher than crushed stone 

(Kurnitski, 2000a). However, if the top layer of the clay is dry, it can have a moisture 

buffering effect, which would be positive for the climate condition in the crawl-space. 

Kurnitski (2000b) revealed that ground-covers with a moisture capacity like that of  

lightweight expanded clay aggregate decrease the relative humidity in summer in the crawl 

space.  Perhaps it is a quality that is lost if a vapour barrier is placed on the ground surface in 

the crawl-space.     

 

The ventilation of the foundation can be done by either natural or mechanical ventilation. In 

the moisture handbook by Nevander & Elmarsson (1994) it is stated that the required design 

of the ventilation gap depends on where the building is situated. A single building in an open 

terrain is more exposed to wind than in urban surroundings, which is why urban crawl 

spaces need a larger ventilation area. The material composition of the crawl space also 

affects the need for ventilation. A floor structure of lightweight concrete needs a larger area 

than wood due to construction damp.  

 

Even if this design were perfectly constructed, this is still a risk design in respect of moisture 

damage. During the winter season, the crawl-space is cooled down and when the warmer 

season arrives, warm humid air is ventilated into the crawl-space. This air is off by the 

surface in the crawl-space which gives rise to an increased relative humidity, exceeding the 

levels for when mould starts to grow.  Due to the heat capacity of the crawl-space, the 

cooling effect can stretch from spring to early autumn. In the south of Sweden the risk 

period is rather long, and in the north it is shorter but the risk instead is higher (Svensson, 

2001).  The solution to increase the air-exchange rate with mechanical ventilation in order to 

evacuate superfluous moisture is, therefore, not always a good option. According to 

measurements by Kurnitski (2000), a mechanically ventilated crawl-space can have a 3-5°C 

lower winter temperature than one with natural ventilation. Instead, a seasonally adjusted 

air-exchange rate, where the rate is reduced during the cold season and increased in the 

warm (Svensson, 2001), would be more beneficial for the crawl-space climate. 

 

There are some solutions to improve the climate condition in the crawl-space. One is to add 

insulation on the ground in the crawl-space and/or to insulate the inside of the foundation 

walls. This solution would decrease the cooling effect causing a higher moisture condition 

(Matilainen and Kurnitski, 2003).  Having a foundation standing on rock means a somewhat 

higher mould risk than if the ground material consists of sand or gravel due to differences in 

heat capacity. Insulation on the counter floor decreases the risk of condensation on the 

surface. Another option is to add heat into the ground (Matilainen et al., 2003), (Svensson, 

2001) during the risk season or to have a dehumidifier installed into the crawl-space. Both 

decrease the RH level in the crawl-space. Having floor heating in the house may, therefore, 

have a positive impact on crawl-space climate due to heat loss through the floor structure. 
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Reducing the insulation level in the floor structure is another way to improve the climate 

conditions in the crawl-space (Matilainen and Kurnitski, 2003).  

 

Impregnation of the wood may increase the durability in terms of preventing rot. However, 

it will not stop mould growth, but instead this mycelium produces a more intensive smell 

than mycelia on wood without impregnation (Nevander & Elmarsson, 1994). 

 

Due to the sensitive climate condition in the crawl-space it is important to keep it free from 

any organic waste. In several cases of the retrieved data, organic waste such as timber 

leftovers from the construction period have caused microbiological smell due to mould 

growth on it.  

Applied ANN  

A feed-forward neural network model was applied on this performance prediction problem. 

The Neural Network Toolbox of Matlab 7.0 (Demuth & Beake, 2000) has been used where a 

back-propagation (Levenberg-Marquardt) algorithm with log-sigmoid transfer function in the 

nodes is applied to predict the performance of outdoor ventilated crawl-spaces. 

 

The training data is secondary data originating from two different sources, SSN and 

Anticimex, which consist of inspection reports. SSN was until recently the national 

organisation for aid to owners of private small houses. Homeowners who had encountered 

moisture damage could apply for financial help for remedial measures. In each application 

there is an inspection report describing the damaged part of the house together with its 

cause and a suggested solution of the problem.  Anticimex is a private company and the 

business encompasses building inspections of different kinds. This project has taken interest 

in the inspection reports that are made before a house purchase is finalized. 

 

The data retrieval comprises outdoor ventilated crawl-spaces built in Sweden and involves 

only single family houses. Only enclosed crawl spaces are included, which means that open 

plinth foundations do not take part in this research project. In order to avoid unnecessary 

data noise some cases was rejected from the data collection. Seasonal houses such as winter 

cabins or summer-houses cannot participate as they may have a different degradation 

process than houses with permanent living. Also excluded are those that have been subject 

to water damage, such as leaking water pipes or submersions due to extreme weather 

situations. Furthermore, if the design of the crawl space has been altered during its lifetime, 

the case has not been used as any change might have had an impact on the performance. 

 

Three different networks for each performance indicator have been trained with two hidden 

layers where the input layer consists of 22 parameters (see Table 1). The performance 

indicators are a measure of the condition at a certain point of time for a certain design of an 

outdoor ventilated crawl-space. Here it is represented by microbiological smell, visible 
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mould and rot in different levels as noted in Table 2. For smell, mould and rot the best 

performing ANN-design were 17+17, 5+10 respectively 2+17 nodes respectively in the two 

hidden layers, Table 3. The prediction results are classified according to the spans given in 

Table 4. More information can be found in Yverås (2010). 

Table 1. Input representation and replaced missing values 

Parameter Definition Replacement value 

X1     Capillary breaking layer 

X2     Drainage system – roof 

X3     Drainage system – ground 

X4     Surrounding ground inclination 

1 = yes, 0 = no  

1 = yes, 0 = no  

1 = yes, 0 = no  

1 = yes, 0 = no 

0.5  

1 

0.5 

0.5 

X5     Insulation - counter floor 

X6     Level of insulation in floor       

        structure 

 

 

X7     Insulation – foundation wall  

1 = yes, 0 = no  

 [mm] 

 

 

 

1 = yes, 0 = no 

0 

Alt 1:.Manufacturer * 

Alt 2: concrete structure=85mm  

Alt 3: else=200 mm 

 

0 

X8   Ventilation – mechanical  

X9   Vapour barrier  

1 = yes, 0 = no 

1 = yes, 0 = no 

0 

1 

X10 Load bearing structure:inorganic 

X11   Counter floor: inorganic 

X12   Foundation wall: inorganic  

X13   Impregnation of wood material 

1 = yes, 0 = no 

1 = yes, 0 = no 

1 = yes, 0 = no 

1 = yes, 0 = no 

0 

0 

1 

0.5 

X14  Floor heating  

X15   Organic waste  

1 = yes, 0 = no 

1 = no,  0 = yes 

0 

1 

X16   Relative humidity  

X17   Precipitation  

X18   Mean annual temperature  

X19   Reference wind velocity  

X20   Surrounding terrain  

 

X21   Ground material  

[%] 

[mm] 

[C°] 

[m/s] 

1 = Outside urban 

areas  

0 = Urban 

0 = Rock, clay 

0.5 = Moraine, Silt 

1 =Gravel, Sand 

No missing value 

No missing value 

No missing value 

No missing value 

No missing value 

 

0.5 

X22  Age at inspection  [years] No missing value 

* Cases with same manufacturer can be considered to have same dimensions 

 

 

Table 2. Output representation (Yverås, 2010) 

Output data Definition 

Y1      Smell 

Y2      Visible mould 

 

Y3      Visible rot 

0 = No smell, 1 = microbiological smell  

0.125 = Nothing visual, 0.375 = Local spots, 0.625 = Light growth in 

major part of  crawl-space, 0.875 = Extensive / rich growth 

0.167 = Nothing visual, 0.5 = On surface, 0.833 = In depth 
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Table 3. Prediction results from the best performing networks (Yverås 2010) 

Performance 

Indicators 

MAE 

*(training) 

MAE* 

(test) 

Corrrect classification 

[%] 
ANN Design 

Smell 

Mould 

Rot/Rust 

0.0409 

0.1588 

0.0608 

0.0324 

0.1187 

0.0839 

100 (38/38) 

76.3 (29/38) 

92.1 (35/38) 

17 + 17 

5 + 10  

2 + 17  

*Mean Absolute Error 

Table 4. Classification of prediction results 

Output data Definition 

Y1      Smell 

Y2      Visible mould 

 

Y3      Visible rot 

<0.5= No smell, ≥ 0.5 = microbiological smell  

< 0.25 = Nothing visual, 0.25 - <0.5 = Local spots, 0.5 - <0.75 = Light 

growth in major part of  crawl-space, ≥ 0.75 = Extensive / rich growth 

< 0.33 = Nothing visual, 0.33 - <0.66 = On surface, ≥ 0.66 = In depth 

 

Deficiencies in training data 

One major drawback of using secondary real life data is that there are to some extent 

missing data that needs to be replaced. In this case some of the parameters could be 

replaced through implicit information, as assumptions can be made due to the general 

perception of a basic outdoor ventilated crawl-space design. The basic design represented in 

Figure 1 reflects the general notion of how an outdoor ventilated crawl-space should look 

like. So if, for instance, the vapour barrier is not mentioned in the report, it is very likely that 

it is present as it otherwise would have been noted as missing. The opposite goes for 

parameters that are not compulsory, but are believed to have a positive impact on the 

performance. In these cases, they are assumed not present in the design if not mentioned. 

Adding insulation on the counter floor or mechanical ventilation are examples of such 

parameters.  But for 6 of the parameters (X1, X3, X4, X6, X13, X21 –  Table 1) none of the 

above reasoning, for different reasons, could be applied and they were therefore were 

replaced with neutral values. According to Famili et al. there is an upper limit for missing 

values and if more than 20% of the attributed values are missing the entire record has to be 

eliminated (Famili et al., 1997). As shown in Table 5 several exceed this level. 

Table 5. Level of missing values in the training data  

Parameter (Input) Level of missing values [%] 

X1    Capillary breaking layer 

X2    Drainage system – roof 

X3    Drainage system – ground 

X4    Surrounding ground inclination 

X6    Level of insulation in floor structure 

35 

21 

63 

25 

45 

X13   Impregnation of wood material 54 

X21   Ground material 50 
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It is often stressed in the literature of ANN that the training data quality is crucial for a 

successful ANN training. The training data must be adequately extensive and representative 

as it will affect the performance of the neural network (Gardner & Dorling, 1998). The size of 

the training set has an influence on the generalisation capability of the network (Haykin, 

1999). The higher the number of variables used, the higher the level of complexity created, 

which in turn requires more training data and training time (Swingler, 1996; Verleysen et al., 

2003). The retrieved data sets must also be representative of the whole problem, and the 

training patterns should be evenly distributed within the domain (Flood & Kartam, 1994). In 

this case, 353 training cases were used as training data where the prediction task was 

represented by 22 input parameters with different levels of presence.  Three of them are 

only represented in 5-8 cases (X8, X5 and X14). These training patterns with a low population 

are therefore at risk of being overshadowed by training patterns with high representation. In 

addition, the output representation is uneven. In Table 6 this is an issue for all three 

performance indicators, in particular, the rot indicator.  

Table 6: Average age and distribution of cases 

Indicator Performance indication 
Percentage of total 

number of cases 

Average age of cases 

[years] 

Smell No microbiological smell 

Microbiological smell 

35 

65 

22.5 

23.0 

Mould No visible mould 

Local mould spots 

Light growth on major part  

Extensive / rich growth 

34 

18 

29 

19 

25.4 

24.6 

20.4 

21.7 

Rot No visible rot 

On surface 

In depth 

80 

4 

16 

22.5 

25.7 

23.7 

 

Over time technical solutions or elements have been improved or refined in order to 

improve the performance. During data retrieval this was found to be the case for the vapour 

barrier and drainage system in ground. In older cases the vapour barriers are not age 

resistant, and will during the course of time degrade with a decreased vapour resistance as a 

result. Nowadays the ground drainage system consists of plastic pipes evacuating infiltrated 

water due to precipitation. Plastic pipes replaced the ceramic pipes during the seventies. 

Plastic drainpipes that are used nowadays are 4 times more efficient than ceramic 

drainpipes.  

On site, the drainage system in the ground is difficult to inspect and, indeed, it is difficult to 

verify if there is one at all. Rather often the inspection reports had access to a technical 

description originating from the documents of the building permit. When the training data 

were retrieved this information was in some cases found to be incorrect. When a test pit 

was dug in order to confirm the technical description of a drainage system it was missing. 

The reliability of the retrieved cases can therefore be questioned. The same goes for the 

ground type information which is also provided by the technical description.  
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The input data list of parameters is, unfortunately, incomplete. Foremost, this is the case for 

natural ventilation and its capacity, as there were rarely any information in the reports 

describing the ground volume in relation to the ventilation area. In addition, it was not 

possible to capture if there was any vegetation adjacent to the foundation that would 

decrease the ventilation of the crawl-space. The absence of these parameters can therefore 

have impaired the ANN training. In each case it is therefore assumed that the ventilation 

capacity is designed according to recommendations. Svensson (2001) has found that an 

increased ventilation rate from low levels has a substantial positive effect on the climate 

conditions whereas higher ventilation rates has less effect on the mould risk compared to an 

increased rate.    

 

Another issue that has not been brought up so far is the maintenance aspect of the involved 

elements of the outdoor ventilated crawl-space. Drainage and sometimes vapour barrier 

have a limited service life. There are recommendations that the drainage should be redone 

after 20-30 years. This has not been addressed in the input data and it can only be assumed 

that the drainage is redone when required which of course is not an entirely correct 

assumption.  

 

The performance indicators, which are represented by the output data, and described 

through the presence of microbiological smell, visible mould and visible rot/rust, can also be 

questioned. Depending on during which season (winter/summer) the inspections are made 

the microbiological smell can be perceived differently. As the temperature falls during winter 

fungal activity slows down and finally the fungus hibernates. Most microorganisms (bacteria 

and fungi) found in buildings can not grow in temperatures lower than 0°C (Flannagan et al., 

2001); their activity is therefore lower in lower temperatures, which in turn, reduces the 

gases that are produced during mould growth. Detecting visible mould during inspection can 

also be difficult. Black spots on a light coloured counter floor is easy to observe by the 

human eye, but difficult if the counter floor is dark. For all these reasons the output data 

cannot be expected to be flawless.  

 

In all, the prediction ability of the neural network depends very much on the data quality in 

terms of completeness, true values, even distribution of cases, correctly chosen parameters 

and sufficient amount of training sets. As noted, the retrieved data do have issues on all 

points.  

Method   

The evaluation has been based on a parameter study applied on the best performing ANN 

achieved in earlier work (Yverås, 2010). The study was performed in two steps were the first 

explored the parameters according to Table 5 and how the condition evolves over time from 

0-50 years.  The case base represents a basic outdoor ventilated crawl-space situated in 

Gothenburg, SW Sweden, in an urban area in a coastal environment. It has a wooden floor 
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structure and conforms with the case illustrated in Figure 1. The aim is to see if the ANN can 

deliver reasonable results regarding the modifications in the case base for each parameter.  

A total amount of 18 parameters, Table 7, were predicted by the trained ANNs, one network 

for each one of the performance indicators; smell, mould and rot. 

 

Table 7 also indicates the expected results of the parameter study. Removing the vapour 

barrier (1) will probably decrease the performance, but would there be any difference if the 

ground has a low (2) or high permeability (3)? The mechanical ventilation (4) is difficult to 

foresee as too much ventilation may have a damaging cooling effect on the crawl-space. 

Having the crawl-space outside urban areas (5) can improve the effect of natural ventilation. 

Decreasing the insulation (7) would have a positive impact on the ground as a result of an 

increased heat flow into the ground. Hence an increased insulation (8) level would have the 

opposite effect on the performance. Having floor heating (9) could benefit the climate in the 

crawl-space using the same reasoning as for decreasing insulation level. To decrease the 

cooling effect the foundation walls can be insulated (10) which, in turn, would improve the 

performance. Insulation on the counter floor (11) prevents damaging condensation of humid 

air on the counter floor. Crawl-space elements of wood with impregnation (13) prevent rot 

but not mould growth, which would instead enhance unwanted smell.  Replacing the wood 

with a load bearing-structure of concrete (14) removes organic elements on the ground, 

which in turn decrease the risk of microbiological growth. However, a too humid climate can 

cause the reinforcement to rust. Rock and clay are examples of ground material with low 

permeability (12). They also have a larger heat capacity than other ground materials, which 

increases the cooling effect on the crawl-space. Leaving out the capillary layer (15) on the 

ground, drainage system of roof (17) and ground (16), and having a surrounding negative 

ground inclination (18) will increase the moisture supply in the crawl space ground.       
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Table 7: Expected results of parameter study 

        Parameters Expected results 

0 Case base  0 

1 Removed vapour barrier  - 

2 Removed vapour barrier + Low permeability  - 

3 Removed vapour barrier + High permeability  - 

4 Mechanical ventilation  +/- 

5 

6 

Outside urban areas  

Foundation wall organic  

+ 

- 

7 Decreased insulation floor structure  + 

8 Increased insulation floor structure - 

9 Floor heating  + 

10 Insulation foundation wall  + 

11 

12 

Insulation counter floor 

Thermal capacity (low permeability)  

+ 

- 

13 Impregnation of wood material  +/- 

14 Load carrying structure of concrete  + 

15 No capillary breaking layer  - 

16 No drainage system ground  - 

17 No drainage system roof - 

18 Ground inclination to the house  - 

*Parameters in the study with expected results, - impairs the performance, +improves the performance 

The next part of the study looked at the impact of different climate conditions, where a case 

base was given 3 different locations with climate data as displayed in Table 8. The locations 

are spread over Sweden from south to north with inland and coastal climate. As before, the 

prediction is studied over time. 

Table 8: Climate data of the four different locations 
Location RH [%] Precipitation [mm] T [ºC] v [m/s] 

Gothenburg (A) 

Stockholm (B) 

Boden (C) 

81 

78 

77 

804 

518 

485 

7.3 

6.5 

1.6 

4.2 

4.4 

2.6 

Results 

When studying the parameters over time it is revealed that the training data is too narrow 

and skewed, Figures 2,3, and 4. This is especially noticeable in the mould prediction results, 

Figure 3. According to the trained ANN the designs become less affected by mould when 

ageing which would seem to be incorrect. Even though the smell and rot indicators do not 

display this kind of problem, the rate of the degradation process differs in between. 

According to the ANN smell evolves rather quickly, and in some cases, immediately. The rot 

prediction in Figure 4 displays a rather flat progress for organic foundation walls.   

The results make it difficult to draw any conclusions of how different design options will 

evolve over time. However, the relations between the curves can be studied in order to see 

if the results are reasonable in terms of overall improved or worsened performance for each 

parameter. The performance of each parameter is compared with the base case design.  
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Figure 2. Results of parameter study – Smell prediction  
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Figure 3. Results of parameter study – Mould prediction  
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Figure 4. Results of parameter study – Rot prediction  
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agrees with the fact that location A has the most humid climate of the three locations. It is 

difficult to draw any conclusioins from the mould indicator since the curves, as before, 

displays a reversed degradation process. In addition, the curves for location A and C cross 

each other at age 23 years. However, it can be noticed that location B has the lowest 

indicator level of visible mould. These results do to some extent indicate that a dryer 

climate, regarding humidity and precipitation, provide for a better performance. However, 

according to the ANN, the outdoor temperature can also be decisive for the performance of 

the outdoor ventilated crawl-space. Svensson (2001) states that the period for mould growth 

is longer in the south of Sweden in comparison with the northern parts, which instead 

display a higher risk. Probably, it is the cooling effect of the ground that explains this 

relation, that   the crawl-space temperature becomes lower in a colder climate. The 

difference between outdoor and crawl-space temperature during summer is larger in the 

north than in south, which gives rise to a higher relative humidity in the crawl-space.  

 

 

 
 

Figure 5. Performance with different geographical locations  
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Discussion 

Despite the good results in the cross-validation the ANN did not perform as well in the 

parameter study. The largest defects concern the reversed degradation in the mould 

indicator. A reasonable explanation for this prediction behaviour may be found in Table 6. It 

displays how the average age of the training cases with respect to mould decreases with 

increasing mould damage condition. This can have been misleading during the ANN training. 

However, this might not be the sole explanation. According to Hukka and Viitanen (1999) it is 

possible for wood to partly recover from mould infestation during dry periods when the 

mould activity is decreased. It is therefore difficult to dismiss the displayed reversed 

degradation process as completely incorrect. 

 

The unexpected results of 12, 13, 15, 16, and 17 in Table 7 can have been caused by the high 

level of missing values, Table 5. These parameters are above the critical level of 20% (Famili 

et al., 1997) for missing values and lie in the span of 21-63%. As a result, this might have 

affected the prediction when removing the vapour barrier (1) as it is dependent on the 

ground conditions and the solutions to evacuate precipitated water and groundwater from 

the crawl-space. In addition there is no parameter describing the moisture buffering effect 

of the ground which, as stated earlier, can be positive for the climate conditions in the crawl-

space. Furthermore, the unexpectedly improved behaviour when drainage system of roof 

(17) and ground (16) and capillary breaking layer (15) is removed can depend on the ground 

characteristics. It does not necessarily have to impair the performance. Natural ground 

conditions can have just as good or even better drainage effect as a constructed drainage 

system. In highly permeable grounds it is therefore not necessary to apply a drainage system 

(Nevander and Elmarsson, 1994). In this instance it is difficult to tell if this is the case as 50% 

of the values are missing regarding ground type in the training data. In other words, the 

prediction results might not be entirely incorrect or solely dependent on the level of missing 

values.  

 

The training process of the ANN seemed to have been sensitive to the skewed data in Table 

6, which besides having an effect on mould prediction, also had an effect on the smell and 

rot predictions. The smell evolves quickly and in some cases immediately, which to some 

extent could have been prevented by having a representation of cases at age 0 which most 

crawl-spaces are healthy when newly constructed. However, this assumption only covers 

those cases that are still recognized as healthy in the inspection reports of real life cases. 

Wooden materials used in the crawl-space can during construction have been unprotected 

from precipitation which later can cause and evolve mould growth. Rot does, on the other 

hand, progress slowly (Fig. 4) which may be caused by the skewed data in Table 6 where the 

major part of the training cases is unaffected by rot. Having an uneven distribution of 

different conditions such as the rot performance indicator can make the ANN to choose the 

most common outcome of the training cases. The larger representation of healthy cases 

could have made the ANN to underestimate the degradation process.  
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Improved characteristics of a parameter can have created difficulties when training the ANN. 

An example of that is the insulation level in the floor structure. Over the years the insulation 

level in all foundations has been increased due to energy efficient measures. This is also 

known to have impaired the climate in the outdoor ventilated crawl-space. Older cases 

therefore have less insulation than more recent cases but due to the age difference the 

older cases have a higher degradation level. This composition of cases in the training data 

could have been misleading during training of the ANN. This can also be the case for the 

drainage system in the ground (plastic/ceramic pipes). 

 

The results in the second parameter study regarding geographical location seem to 

correspond with previous research if the reversed mould degradation is disregarded. If the 

geographical location is important for the performance, as is indicated in the study, it may 

be argued that the outdoor ventilated crawl-space design needs to be adapted for each 

location. This is not the case today as this foundation has the same design regardless of 

geographical location.   

 

The parameter study goes outside the limits of the training data which makes it somewhat 

unfair to apply a parameter study on to the trained ANN to assess the reliability. It has a 

timeline that does not correspond with the training data. However, it does provide some 

information on how the training data can be improved if extended in number, involved 

parameters and design of parameters and performance indicators.  The usefulness of the 

trained ANN to predict the performance is therefore very restricted and not appropriate for 

parameter studies as it would force the ANN to extrapolation. The probable cause for the 

good prediction ability in the cross-validation was the same composition of the test data and 

the training data. In Table 8 the same similar decreasing of age with increasing mould 

degradation can be noted. 

Table 8: Average age of mould indicators in test cases 

Indicator Performance indication 
Average age of test 

cases [years] 

Mould No visible mould 

Local mould spots 

Light growth on major part  

Extensive / rich growth 

26.3 

23.0 

17.6 

20.5 

Conclusions 

A performance indicator (PI) tool with successful ANN training would be helpful in the early 

design stage. Capturing real life knowledge is valuable since the designers rarely if ever are 

given the opportunity to follow up of previous projects. This kind of tool would allow 

engineering consultants to evaluate several options without being required to have deep 

knowledge of building physics. Furthermore, predicting the condition is rather complex as 

the causalities affecting the performance such as the degradation process are not yet fully 
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understood. ANN makes it possible to evade this which is why it makes so interesting to 

explore on this prediction problem. 

 

The parameter study provided some unexpected results that are not necessarily completely 

incorrect. Besides skewed data and the high level of missing values, there may be 

parameters not captured in the training data that influence the results. Unexpected 

prediction results do not have to be unreasonable, it can also be new knowledge not yet 

recognized. But due to the data quality, it is not possible to draw any conclusions. Hence, the 

results did so far neither reject nor confirm the possibility of applying ANN on this prediction 

problem. It is important to understand that the results primarily reflect the composition of 

the training data rather than the ANN as the ANN itself is a product of the training data. The 

difficulty lies in the available data sources which in this case were inadequate due to a high 

level of missing data, absence of a certain parameter, and the reliability and consistency of 

provided information in each training case. Furthermore, relying on cross validation results 

alone, in this context, has in this study been showed to be insufficient.  

 

In all, better training data is required in order further to evaluate the potential of applying 

ANN on performance predictions of building elements further. Even if one has access to data 

sources primarily designed for this purpose, it is still important to consider the choice of 

performance indicators and to investigate these thoroughly. Mould growth is a very complex 

process which needs to be handled carefully. Therefore the performance indicators have to 

be uncomplicated to obtain yet being representative, robust, and reliable.  

Further work 

But even if one has access to primary complete data and necessary parameters describing 

the prediction problem at hand, there are some aspects to consider when creating an ANN 

for predicting the condition of an outdoor-ventilated crawl space design.  

 

The output data is another issue to discuss. In this research project, the performance 

representation was decided by the available information found in the data sources which in 

their present form are afflicted with some uncertainties. Starting with the smell indicator, 

the data collected from the inspection reports stems from inspections made both during the 

cold and the warm seasons. Furthermore, the microbiological smell is noted by a human 

sense and is therefore rather likely to be perceived differently. Furthermore, as the mould 

has a reduced activity during the cold season performance indicators should not be retrieved 

during that time. Even though microbiological smell is a difficult indicator to capture it can 

not be rejected as a performance indicator. It has a negative impact if the air from the crawl-

space is allowed to leak into the house and contaminate the indoor air. It is identified as 

causing the sick-building-syndrome (SBS) which gives rise to different symptoms such as 

headache, fatigue, and irritation in throat, nose and eyes. Mould, as well, is in general not 

dangerous for the load-bearing structure and can be accepted as long as it does not affect 
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the indoor air quality. The mould indicator was based on ocular findings in the crawl-space 

during inspections which also can be queried. First of all, mould does not have to be visible 

in order to develop a microbiological smell. Furthermore, it can also be difficult to detect 

depending on the material it grows on. As with smell, the extent of mould growth can also 

be perceived differently. Rot and rust do not, on the other hand, not give rise to large 

uncertainties. If it is limited to the surface it does not pose any threat to the load-bearing 

capacity. Deep rot/rust, on the other hand, can risk the element to collapse. It might be 

difficult to define the breaking point, though this was not an issue in the retrieved training 

cases in this instance.        

 

If this was to be developed further into a performance indicator tool based on primary data, 

it is important to design the performance indicators to make the assessment of them secure. 

There should be clear and unambiguous instructions of a sampling strategy and the results 

should be assessed with the aim to attain consistent training data. In addition the solution 

must be feasible when assessing the condition of the crawl-space at the site. If measuring 

equipment were to be used, it must not be high precision instruments presenting decimal 

values. It is more important to attain indicative and robust values that are reliable enough to 

provide consistent data that reflects the condition of the crawl-space in terms of 

degradation level.   

 

It is rather difficult to attain even distributed training data and this becomes even more 

complicated when age is involved. One way to evade this problem and the risk of reversed 

degradation process, is to include only cases of a certain age with a margin of perhaps +/-2 

years. However, the chosen age needs to be considered thoroughly. If the chosen age is too 

young, too few unhealthy cases will be found. The effects of moisture problems can take 

several years to develop before they are discovered. In the case of outdoor ventilated crawl-

spaces the design is very sensitive for the yearly weather changes. It may work very well for 

several years but one year with increased humidity can boost the degradation process, 

which is why it is important to have climate data covering such extreme weather years. 

Choosing a too old age will on the other hand exclude cases with improving design features 

that have recently introduced.  

 

The input data list is rather long and can be reduced if one only accepts training data from 

cases with the lowest acceptable standard corresponding with the basic design of an 

outdoor ventilated crawl-space. The remaining parameters describe performance improving 

parameters (X2-X5), site and climate (X11-X17) conditions, Table 9. As noted, there are two 

other parameters added that are considered to improve the performance (X4-X5). 

Parameters reflecting recent and improving design will, however, limit the age span that the 

ANN can be trained on.  The mechanical ventilation (X7) needs some reconsideration as it 

can be described in capacity and seasonal adapted ventilation if present.   
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Table 9. Suggested input representation for future work 

Parameter 

X1      

X2     

X3      

X4 

X5 

X6 

X7 

X8 

X9 

X10 

X11 

X12 

X13 

X14 

X15 

X16 

X17 

X18   

Level of insulation in floor structure 

Insulation - counter floor 

Insulation – foundation wall 

Insulation cover on ground – NEW! 

Dehumidifier – NEW! 

Degree of natural ventilation – NEW! 

Ventilation – mechanical 

Load carrying structure: concrete/wood 

Counter floor: inorganic/organic 

Floor heating 

Relative humidity 

Precipitation 

Mean annual temperature  

Reference wind velocity 

Surrounding terrain 

Surrounding ground inclination 

Ground material 

Age at inspection 

 

 

The three performance indicators were separated by having separate ANN for each 

indicator. They should remain separated even with a good quality of retrieved training data. 

The number of input data is still rather large and the relation between the indicators does 

not need to be dependent of each other. For instance, mould does not have to be visible by 

the human eye to develop microbiological smell. 

 

Finally, the crawl-space design is available for inspections without damaging any materials or 

elements in order to make an assessment of the condition or to state the composition of the 

design. This is not always the case for other parts of the building, such as exterior walls. 

Applying ANN on closed elements can therefore require another approach than that for 

outdoor ventilated crawl-spaces. 
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